A Fourier Transform Framework for Domain Adaptation
- URL: http://arxiv.org/abs/2403.07798v2
- Date: Thu, 21 Mar 2024 06:45:53 GMT
- Title: A Fourier Transform Framework for Domain Adaptation
- Authors: Le Luo, Bingrong Xu, Qingyong Zhang, Cheng Lian, Jie Luo,
- Abstract summary: unsupervised domain adaptation (UDA) can transfer knowledge from a label-rich source domain to a target domain that lacks labels.
Many existing UDA algorithms suffer from directly using raw images as input.
We employ the Fourier method (FTF) to incorporate low-level information from the target domain into the source domain.
- Score: 8.997055928719515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By using unsupervised domain adaptation (UDA), knowledge can be transferred from a label-rich source domain to a target domain that contains relevant information but lacks labels. Many existing UDA algorithms suffer from directly using raw images as input, resulting in models that overly focus on redundant information and exhibit poor generalization capability. To address this issue, we attempt to improve the performance of unsupervised domain adaptation by employing the Fourier method (FTF).Specifically, FTF is inspired by the amplitude of Fourier spectra, which primarily preserves low-level statistical information. In FTF, we effectively incorporate low-level information from the target domain into the source domain by fusing the amplitudes of both domains in the Fourier domain. Additionally, we observe that extracting features from batches of images can eliminate redundant information while retaining class-specific features relevant to the task. Building upon this observation, we apply the Fourier Transform at the data stream level for the first time. To further align multiple sources of data, we introduce the concept of correlation alignment. To evaluate the effectiveness of our FTF method, we conducted evaluations on four benchmark datasets for domain adaptation, including Office-31, Office-Home, ImageCLEF-DA, and Office-Caltech. Our results demonstrate superior performance.
Related papers
- UMFC: Unsupervised Multi-Domain Feature Calibration for Vision-Language Models [75.77651291095565]
We leverage unlabeled data that naturally spans multiple domains to enhance the transferability of vision-language models.
Under this unsupervised multi-domain setting, we have identified inherent model bias within CLIP.
We propose Unsupervised Multi-domain Feature (UMFC) to mitigate this model bias.
arXiv Detail & Related papers (2024-11-11T12:25:02Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Domain Generalization with Fourier Transform and Soft Thresholding [10.50210846364862]
Domain generalization aims to train models on multiple source domains so that they can generalize well to unseen target domains.
To overcome this limitation, we introduce a soft-thresholding function in the Fourier domain.
The innovative nature of the soft thresholding fused with Fourier-transform-based domain generalization improves neural network models' performance.
arXiv Detail & Related papers (2023-09-18T15:28:09Z) - FFPN: Fourier Feature Pyramid Network for Ultrasound Image Segmentation [15.011573950064424]
Ultrasound (US) image segmentation is an active research area that requires real-time and highly accurate analysis in many scenarios.
Existing approaches may suffer from inadequate contour encoding or fail to effectively leverage the encoded results.
In this paper, we introduce a novel Fourier-anchor-based DTS framework called Fourier Feature Pyramid Network (FFPN) to address the aforementioned issues.
arXiv Detail & Related papers (2023-08-26T07:28:09Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Source-Free Adaptation to Measurement Shift via Bottom-Up Feature
Restoration [6.9871848733878155]
Source-free domain adaptation (SFDA) aims to adapt a model trained on labelled data in a source domain to unlabelled data in a target domain without access to the source-domain data during adaptation.
We propose Feature Restoration (FR) as it seeks to extract features with the same semantics from the target domain as were previously extracted from the source.
We additionally propose Bottom-Up Feature Restoration (BUFR), a bottom-up training scheme for FR which boosts performance by preserving learnt structure in the later layers of a network.
arXiv Detail & Related papers (2021-07-12T14:21:14Z) - A Fourier-based Framework for Domain Generalization [82.54650565298418]
Domain generalization aims at tackling this problem by learning transferable knowledge from multiple source domains in order to generalize to unseen target domains.
This paper introduces a novel Fourier-based perspective for domain generalization.
Experiments on three benchmarks have demonstrated that the proposed method is able to achieve state-of-the-arts performance for domain generalization.
arXiv Detail & Related papers (2021-05-24T06:50:30Z) - Fourier Image Transformer [10.315102237565734]
We show that an auto-regressive image completion task is equivalent to predicting a higher resolution output given a low-resolution input.
We demonstrate the practicality of this approach in the context of computed tomography (CT) image reconstruction.
arXiv Detail & Related papers (2021-04-06T14:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.