51% Attack via Difficulty Increase with a Small Quantum Miner
- URL: http://arxiv.org/abs/2403.08023v2
- Date: Mon, 30 Sep 2024 10:29:18 GMT
- Title: 51% Attack via Difficulty Increase with a Small Quantum Miner
- Authors: Bolton Bailey, Or Sattath,
- Abstract summary: We present a strategy for a single quantum miner with relatively low hashing power.
Most proof-of-work cryptocurrencies, including Bitcoin, are vulnerable to our attack.
- Score: 0.9208007322096532
- License:
- Abstract: We present a strategy for a single quantum miner with relatively low hashing power, with the same ramifications as a 51% attack. Bitcoin nodes consider the chain with the highest cumulative proof-of-work to be the valid chain. A quantum miner can manipulate the block timestamps to multiply the difficulty by $c$. The fork-choice rule counts every block with increased difficulty with weight $c$. By using Grover's algorithm, it is only $O(\sqrt c)$ harder for the quantum miner to mine such blocks. By picking a high enough $c$, the single quantum miner can create a competing chain with fewer blocks, but more cumulative proof-of-work. The time required is $O(\frac{1}{r^2})$ epochs, where $r$ is the fraction of the block rewards that the quantum miner would have received if they mined honestly. Most proof-of-work cryptocurrencies, including Bitcoin, are vulnerable to our attack. However, it will likely be impossible to execute in forthcoming years, as it requires an extremely fast and fault-tolerant quantum computer.
Related papers
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Statistical Confidence in Mining Power Estimates for PoW Blockchains [1.7061868168035934]
For Proof of Work (PoW) blockchains, the distribution of mining power cannot be read directly from the blockchain.
We introduce a framework to quantify this statistical uncertainty for the Nakamoto coefficient.
arXiv Detail & Related papers (2024-03-20T16:43:30Z) - Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
We first examine the hardness of solving various search problems by hybrid quantum-classical strategies.
We then construct a hybrid quantum-classical search algorithm and analyze its success probability.
arXiv Detail & Related papers (2023-11-07T04:59:02Z) - Undetectable Selfish Mining [4.625489011466493]
A strategic Bitcoin miner may profit by deviating from the intended Bitcoin protocol.
We develop a selfish mining variant that is provably *statistically undetectable*
We show that our strategy is strictly profitable for attackers with $38.2% ll 50%$ of the total hashrate.
arXiv Detail & Related papers (2023-09-13T09:51:32Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Conditions for Advantageous Quantum Bitcoin Mining [0.0]
We determine the speed and energy efficiency a quantum computer needs to offer an advantage over classical mining.
We develop a closed-form approximation for the probability that the quantum miner successfully mines a block.
We show that, for a quantum miner that is "peaceful", this success probability is maximized if the quantum miner applies Grover iterations for 16 minutes before measuring.
arXiv Detail & Related papers (2021-10-02T21:08:07Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Advantage on Proof of Work [0.0]
We make the case that quantum devices provide a computational advantage in performing Proof-of-Work (PoW) in the context of Bitcoin.
This has strong consequences regarding both quantum-based attacks on the integrity of the entirety of the blockchain, as well as more legitimate uses of quantum computation for the purpose of mining Bitcoin and other cryptocurrencies.
arXiv Detail & Related papers (2021-05-05T01:27:31Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.