Mitigating the Impact of Attribute Editing on Face Recognition
- URL: http://arxiv.org/abs/2403.08092v2
- Date: Tue, 9 Apr 2024 20:55:01 GMT
- Title: Mitigating the Impact of Attribute Editing on Face Recognition
- Authors: Sudipta Banerjee, Sai Pranaswi Mullangi, Shruti Wagle, Chinmay Hegde, Nasir Memon,
- Abstract summary: We show that facial attribute editing using modern generative AI models can severely degrade automated face recognition systems.
We propose two novel techniques for local and global attribute editing.
- Score: 14.138965856511387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Through a large-scale study over diverse face images, we show that facial attribute editing using modern generative AI models can severely degrade automated face recognition systems. This degradation persists even with identity-preserving generative models. To mitigate this issue, we propose two novel techniques for local and global attribute editing. We empirically ablate twenty-six facial semantic, demographic and expression-based attributes that have been edited using state-of-the-art generative models, and evaluate them using ArcFace and AdaFace matchers on CelebA, CelebAMaskHQ and LFW datasets. Finally, we use LLaVA, an emerging visual question-answering framework for attribute prediction to validate our editing techniques. Our methods outperform the current state-of-the-art at facial editing (BLIP, InstantID) while improving identity retention by a significant extent.
Related papers
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
Diffusion models have demonstrated impressive performance in face restoration.
We propose OSDFace, a novel one-step diffusion model for face restoration.
Results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics.
arXiv Detail & Related papers (2024-11-26T07:07:48Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
Identity-preserving text-to-image generation (ID-T2I) has received significant attention due to its wide range of application scenarios like AI portrait and advertising.
We present textbfID-Aligner, a general feedback learning framework to enhance ID-T2I performance.
arXiv Detail & Related papers (2024-04-23T18:41:56Z) - When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for
Personalized Image Generation [60.305112612629465]
Text-to-image diffusion models have excelled in producing diverse, high-quality, and photo-realistic images.
We present a novel use of the extended StyleGAN embedding space $mathcalW_+$ to achieve enhanced identity preservation and disentanglement for diffusion models.
Our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions.
arXiv Detail & Related papers (2023-11-29T09:05:14Z) - DreamIdentity: Improved Editability for Efficient Face-identity
Preserved Image Generation [69.16517915592063]
We propose a novel face-identity encoder to learn an accurate representation of human faces.
We also propose self-augmented editability learning to enhance the editability of models.
Our methods can generate identity-preserved images under different scenes at a much faster speed.
arXiv Detail & Related papers (2023-07-01T11:01:17Z) - ManiCLIP: Multi-Attribute Face Manipulation from Text [104.30600573306991]
We present a novel multi-attribute face manipulation method based on textual descriptions.
Our method generates natural manipulated faces with minimal text-irrelevant attribute editing.
arXiv Detail & Related papers (2022-10-02T07:22:55Z) - Explaining Bias in Deep Face Recognition via Image Characteristics [9.569575076277523]
We evaluate ten state-of-the-art face recognition models, comparing their fairness in terms of security and usability on two data sets.
We then analyze the impact of image characteristics on models performance.
arXiv Detail & Related papers (2022-08-23T17:18:23Z) - A comprehensive survey on semantic facial attribute editing using
generative adversarial networks [0.688204255655161]
A large number of face generation and manipulation models have been proposed.
Semantic facial attribute editing is the process of varying the values of one or more attributes of a face image.
Based on their architectures, the state-of-the-art models are categorized and studied as encoder-decoder, image-to-image, and photo-guided models.
arXiv Detail & Related papers (2022-05-21T13:09:38Z) - A Latent Transformer for Disentangled and Identity-Preserving Face
Editing [3.1542695050861544]
We propose to edit facial attributes via the latent space of a StyleGAN generator.
We train a dedicated latent transformation network and incorporate explicit disentanglement and identity preservation terms in the loss function.
Our model achieves a disentangled, controllable, and identity-preserving facial attribute editing, even in the challenging case of real (i.e., non-synthetic) images and videos.
arXiv Detail & Related papers (2021-06-22T16:04:30Z) - MagGAN: High-Resolution Face Attribute Editing with Mask-Guided
Generative Adversarial Network [145.4591079418917]
MagGAN learns to only edit the facial parts that are relevant to the desired attribute changes.
A novel mask-guided conditioning strategy is introduced to incorporate the influence region of each attribute change into the generator.
A multi-level patch-wise discriminator structure is proposed to scale our model for high-resolution ($1024 times 1024$) face editing.
arXiv Detail & Related papers (2020-10-03T20:56:16Z) - FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping [43.236261887752065]
We propose a novel two-stage framework, called FaceShifter, for high fidelity and occlusion aware face swapping.
In its first stage, our framework generates the swapped face in high-fidelity by exploiting and integrating the target attributes thoroughly and adaptively.
To address the challenging facial synthesiss, we append a second stage consisting of a novel Heuristic Error Acknowledging Refinement Network (HEAR-Net)
arXiv Detail & Related papers (2019-12-31T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.