On Tractable $Φ$-Equilibria in Non-Concave Games
- URL: http://arxiv.org/abs/2403.08171v2
- Date: Wed, 3 Jul 2024 00:26:58 GMT
- Title: On Tractable $Φ$-Equilibria in Non-Concave Games
- Authors: Yang Cai, Constantinos Daskalakis, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng,
- Abstract summary: Non-concave games introduce significant game-theoretic and optimization challenges.
We show that when $Phi$ is finite, there exists an efficient uncoupled learning algorithm that converges to the corresponding $Phi$-equilibria.
We also show that Online Gradient Descent can efficiently approximate $Phi$-equilibria in non-trivial regimes.
- Score: 53.212133025684224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Online Gradient Descent and other no-regret learning procedures are known to efficiently converge to a coarse correlated equilibrium in games where each agent's utility is concave in their own strategy, this is not the case when utilities are non-concave -- a common scenario in machine learning applications involving strategies parameterized by deep neural networks, or when agents' utilities are computed by neural networks, or both. Non-concave games introduce significant game-theoretic and optimization challenges: (i) Nash equilibria may not exist; (ii) local Nash equilibria, though existing, are intractable; and (iii) mixed Nash, correlated, and coarse correlated equilibria generally have infinite support and are intractable. To sidestep these challenges, we revisit the classical solution concept of $\Phi$-equilibria introduced by Greenwald and Jafari [2003], which is guaranteed to exist for an arbitrary set of strategy modifications $\Phi$ even in non-concave games [Stoltz and Lugosi, 2007]. However, the tractability of $\Phi$-equilibria in such games remains elusive. In this paper, we initiate the study of tractable $\Phi$-equilibria in non-concave games and examine several natural families of strategy modifications. We show that when $\Phi$ is finite, there exists an efficient uncoupled learning algorithm that converges to the corresponding $\Phi$-equilibria. Additionally, we explore cases where $\Phi$ is infinite but consists of local modifications, showing that Online Gradient Descent can efficiently approximate $\Phi$-equilibria in non-trivial regimes.
Related papers
- Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
We develop a new framework to characterize optimistic policy gradient methods in multi-player games with a single controller.
Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
arXiv Detail & Related papers (2023-12-19T11:34:10Z) - A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning [53.83345471268163]
We investigate learning the equilibria in non-stationary multi-agent systems.
We show how to test for various types of equilibria by a black-box reduction to single-agent learning.
arXiv Detail & Related papers (2023-06-12T23:48:24Z) - Global Nash Equilibrium in Non-convex Multi-player Game: Theory and
Algorithms [66.8634598612777]
We show that Nash equilibrium (NE) is acceptable to all players in a multi-player game.
We also show that no one can benefit unilaterally from the general theory step by step.
arXiv Detail & Related papers (2023-01-19T11:36:50Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
We develop the concepts of Mean-Field correlated and coarse-correlated equilibria.
We show that they can be efficiently learnt in emphall games, without requiring any additional assumption on the structure of the game.
arXiv Detail & Related papers (2022-08-22T08:31:46Z) - Approximate Nash Equilibrium Learning for n-Player Markov Games in
Dynamic Pricing [0.0]
We investigate Nash equilibrium learning in a competitive Markov Game (MG) environment.
We develop a new model-free method to find approximate Nash equilibria.
We demonstrate that an approximate Nash equilibrium can be learned, particularly in the dynamic pricing domain.
arXiv Detail & Related papers (2022-07-13T19:27:07Z) - Independent Policy Gradient for Large-Scale Markov Potential Games:
Sharper Rates, Function Approximation, and Game-Agnostic Convergence [30.084357461497042]
We learn a Nash equilibrium of an MPG in which the size of state space and/or the number of players can be very large.
We propose new independent policy gradient algorithms that are run by all players in tandem.
We identify a class of independent policy gradient algorithms that enjoys convergence for both zero-sum Markov games and Markov cooperative games with the players that are oblivious to the types of games being played.
arXiv Detail & Related papers (2022-02-08T20:09:47Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Convergence of Deep Fictitious Play for Stochastic Differential Games [6.875312133832078]
Recently proposed machine learning algorithm, deep fictitious play, provides a novel efficient tool for finding Markovian Nash equilibrium of large $N$ asymmetric differential games.
By incorporating the idea of fictitious play, the algorithm decouples the game into $N$ sub-optimization problems.
We show that the strategy based on DFP forms an $eps$-Nash equilibrium.
arXiv Detail & Related papers (2020-08-12T18:27:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.