IG-FIQA: Improving Face Image Quality Assessment through Intra-class
Variance Guidance robust to Inaccurate Pseudo-Labels
- URL: http://arxiv.org/abs/2403.08256v1
- Date: Wed, 13 Mar 2024 05:15:43 GMT
- Title: IG-FIQA: Improving Face Image Quality Assessment through Intra-class
Variance Guidance robust to Inaccurate Pseudo-Labels
- Authors: Minsoo Kim, Gi Pyo Nam, Haksub Kim, Haesol Park, and Ig-Jae Kim
- Abstract summary: We present IG-FIQA, a novel approach to guide FIQA training, introducing a weight parameter to alleviate the adverse impact of these classes.
On various benchmark datasets, our proposed method, IG-FIQA, achieved novel state-of-the-art (SOTA) performance.
- Score: 13.567049202308981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of face image quality assesment (FIQA), method based on sample
relative classification have shown impressive performance. However, the quality
scores used as pseudo-labels assigned from images of classes with low
intra-class variance could be unrelated to the actual quality in this method.
To address this issue, we present IG-FIQA, a novel approach to guide FIQA
training, introducing a weight parameter to alleviate the adverse impact of
these classes. This method involves estimating sample intra-class variance at
each iteration during training, ensuring minimal computational overhead and
straightforward implementation. Furthermore, this paper proposes an on-the-fly
data augmentation methodology for improved generalization performance in FIQA.
On various benchmark datasets, our proposed method, IG-FIQA, achieved novel
state-of-the-art (SOTA) performance.
Related papers
- Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - GraFIQs: Face Image Quality Assessment Using Gradient Magnitudes [9.170455788675836]
Face Image Quality Assessment (FIQA) estimates the utility of face images for automated face recognition (FR) systems.
We propose in this work a novel approach to assess the quality of face images based on inspecting the required changes in the pre-trained FR model weights.
arXiv Detail & Related papers (2024-04-18T14:07:08Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - A Lightweight Parallel Framework for Blind Image Quality Assessment [7.9562077122537875]
We propose a lightweight parallel framework (LPF) for blind image quality assessment (BIQA)
First, we extract the visual features using a pre-trained feature extraction network. Furthermore, we construct a simple yet effective feature embedding network (FEN) to transform the visual features.
We present two novel self-supervised subtasks, including a sample-level category prediction task and a batch-level quality comparison task.
arXiv Detail & Related papers (2024-02-19T10:56:58Z) - Test Time Adaptation for Blind Image Quality Assessment [20.50795362928567]
We introduce two novel quality-relevant auxiliary tasks at the batch and sample levels to enable TTA for blind IQA.
Our experiments reveal that even using a small batch of images from the test distribution helps achieve significant improvement in performance.
arXiv Detail & Related papers (2023-07-27T09:43:06Z) - A Quality Aware Sample-to-Sample Comparison for Face Recognition [13.96448286983864]
This work integrates a quality-aware learning process at the sample level into the classification training paradigm (QAFace)
Our method adaptively finds and assigns more attention to the recognizable low-quality samples in the training datasets.
arXiv Detail & Related papers (2023-06-06T20:28:04Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - CR-FIQA: Face Image Quality Assessment by Learning Sample Relative
Classifiability [2.3624125155742055]
We propose a novel learning paradigm that learns internal network observations during the training process.
Our proposed CR-FIQA uses this paradigm to estimate the face image quality of a sample by predicting its relative classifiability.
We demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms.
arXiv Detail & Related papers (2021-12-13T12:18:43Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
We introduce a simple pseudo-labelling method to source high-quality pseudo-annotations from a training set.
We present two novel methods to improve the precision of the pseudo-labelling process.
Our method achieves state-of-the-art or second-best performance compared to existing approaches.
arXiv Detail & Related papers (2021-12-10T18:59:06Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.