MergeOcc: Bridge the Domain Gap between Different LiDARs for Robust Occupancy Prediction
- URL: http://arxiv.org/abs/2403.08512v2
- Date: Mon, 19 Aug 2024 02:46:26 GMT
- Title: MergeOcc: Bridge the Domain Gap between Different LiDARs for Robust Occupancy Prediction
- Authors: Zikun Xu, Jianqiang Wang, Shaobing Xu,
- Abstract summary: MergeOcc is developed to simultaneously handle different LiDARs by leveraging multiple datasets.
The effectiveness of MergeOcc is validated through experiments on two prominent datasets for autonomous vehicles.
- Score: 8.993992124170624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based 3D occupancy prediction evolved rapidly alongside the emergence of large datasets. Nevertheless, the potential of existing diverse datasets remains underutilized as they kick in individually. Models trained on a specific dataset often suffer considerable performance degradation when deployed to real-world scenarios or datasets involving disparate LiDARs. This paper aims to develop a generalized model called MergeOcc, to simultaneously handle different LiDARs by leveraging multiple datasets. The gaps among LiDAR datasets primarily manifest in geometric disparities and semantic inconsistencies. Thus, MergeOcc incorporates a novel model featuring a geometric realignment module and a semantic label mapping module to enable multiple datasets training (MDT). The effectiveness of MergeOcc is validated through experiments on two prominent datasets for autonomous vehicles: OpenOccupancy-nuScenes and SemanticKITTI. The results demonstrate its enhanced robustness and remarkable performance across both types of LiDARs, outperforming several SOTA multi-modality methods. Notably, despite using an identical model architecture and hyper-parameter set, MergeOcc can significantly surpass the baseline due to its exposure to more diverse data. MergeOcc is considered the first cross-dataset 3D occupancy prediction pipeline that effectively bridges the domain gap for seamless deployment across heterogeneous platforms.
Related papers
- Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Det is a framework for unified and universal multi-dataset training on 3D detection.
We introduce multi-stage prompting modules for multi-dataset 3D detection.
Results on zero-shot cross-dataset transfer validate the generalization capability of our proposed method.
arXiv Detail & Related papers (2024-09-30T17:57:50Z) - Multi-Space Alignments Towards Universal LiDAR Segmentation [50.992103482269016]
M3Net is a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation.
We first combine large-scale driving datasets acquired by different types of sensors from diverse scenes.
We then conduct alignments in three spaces, namely data, feature, and label spaces, during the training.
arXiv Detail & Related papers (2024-05-02T17:59:57Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control [68.14798033899955]
Large, pretrained latent diffusion models (LDMs) have demonstrated an extraordinary ability to generate creative content.
However, are they usable as large-scale data generators, e.g., to improve tasks in the perception stack, like semantic segmentation?
We investigate this question in the context of autonomous driving, and answer it with a resounding "yes"
arXiv Detail & Related papers (2023-12-05T18:34:12Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
Point Prompt Training is a novel framework for multi-dataset synergistic learning in the context of 3D representation learning.
It can overcome the negative transfer associated with synergistic learning and produce generalizable representations.
It achieves state-of-the-art performance on each dataset using a single weight-shared model with supervised multi-dataset training.
arXiv Detail & Related papers (2023-08-18T17:59:57Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
arXiv Detail & Related papers (2023-03-23T17:59:02Z) - Shared Manifold Learning Using a Triplet Network for Multiple Sensor
Translation and Fusion with Missing Data [2.452410403088629]
We propose a Contrastive learning based MultiModal Alignment Network (CoMMANet) to align data from different sensors into a shared and discriminative manifold.
The proposed architecture uses a multimodal triplet autoencoder to cluster the latent space in such a way that samples of the same classes from each heterogeneous modality are mapped close to each other.
arXiv Detail & Related papers (2022-10-25T20:22:09Z) - AVIDA: Alternating method for Visualizing and Integrating Data [1.6637373649145604]
AVIDA is a framework for simultaneously performing data alignment and dimension reduction.
We show that AVIDA correctly aligns high-dimensional datasets without common features.
In general applications, other methods can be used for the alignment and dimension reduction modules.
arXiv Detail & Related papers (2022-05-31T22:36:10Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
We develop a framework for comparing data manifold, aimed at the evaluation of deep generative models.
Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence)
We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance.
arXiv Detail & Related papers (2021-06-08T00:30:43Z) - Multimodal Remote Sensing Benchmark Datasets for Land Cover
Classification with A Shared and Specific Feature Learning Model [36.993630058695345]
We propose a shared and specific feature learning (S2FL) model to decomposing multimodal RS data into modality-shared and modality-specific components.
To better assess multimodal baselines and the newly-proposed S2FL model, three multimodal RS benchmark datasets, i.e., Houston2013 -- hyperspectral and multispectral data, Berlin -- hyperspectral and synthetic aperture radar (SAR) data, Augsburg -- hyperspectral, SAR, and digital surface model (DSM) data, are released and used for land cover classification.
arXiv Detail & Related papers (2021-05-21T08:14:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.