Improving Implicit Regularization of SGD with Preconditioning for Least Square Problems
- URL: http://arxiv.org/abs/2403.08585v3
- Date: Sun, 26 May 2024 06:17:59 GMT
- Title: Improving Implicit Regularization of SGD with Preconditioning for Least Square Problems
- Authors: Junwei Su, Difan Zou, Chuan Wu,
- Abstract summary: We study the generalization performance of gradient descent (SGD) with preconditioning for the least squared problem.
We show that our proposed preconditioning matrix is straightforward enough to allow robust estimation from finite samples.
- Score: 19.995877680083105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice and plays an important role in the generalization of modern machine learning. However, prior research has revealed instances where the generalization performance of SGD is worse than ridge regression due to uneven optimization along different dimensions. Preconditioning offers a natural solution to this issue by rebalancing optimization across different directions. Yet, the extent to which preconditioning can enhance the generalization performance of SGD and whether it can bridge the existing gap with ridge regression remains uncertain. In this paper, we study the generalization performance of SGD with preconditioning for the least squared problem. We make a comprehensive comparison between preconditioned SGD and (standard \& preconditioned) ridge regression. Our study makes several key contributions toward understanding and improving SGD with preconditioning. First, we establish excess risk bounds (generalization performance) for preconditioned SGD and ridge regression under an arbitrary preconditions matrix. Second, leveraging the excessive risk characterization of preconditioned SGD and ridge regression, we show that (through construction) there exists a simple preconditioned matrix that can make SGD comparable to (standard \& preconditioned) ridge regression. Finally, we show that our proposed preconditioning matrix is straightforward enough to allow robust estimation from finite samples while maintaining a theoretical improvement. Our empirical results align with our theoretical findings, collectively showcasing the enhanced regularization effect of preconditioned SGD.
Related papers
- Curvature-Informed SGD via General Purpose Lie-Group Preconditioners [6.760212042305871]
We present a novel approach to accelerate gradient descent (SGD) by utilizing curvature information.
Our approach involves two preconditioners: a matrix-free preconditioner and a low-rank approximation preconditioner.
We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision, NLP, and RL tasks.
arXiv Detail & Related papers (2024-02-07T03:18:00Z) - Risk Bounds of Accelerated SGD for Overparameterized Linear Regression [75.27846230182885]
Accelerated gradient descent (ASGD) is a workhorse in deep learning.
Existing optimization theory can only explain the faster convergence of ASGD, but cannot explain its better generalization.
arXiv Detail & Related papers (2023-11-23T23:02:10Z) - Implicit Regularization or Implicit Conditioning? Exact Risk
Trajectories of SGD in High Dimensions [26.782342518986503]
gradient descent (SGD) is a pillar of modern machine learning, serving as the go-to optimization algorithm for a diverse array of problems.
We show how to adapt the HSGD formalism to include streaming SGD, which allows us to produce an exact prediction for the excess risk of multi-pass SGD relative to that of streaming SGD.
arXiv Detail & Related papers (2022-06-15T02:32:26Z) - Risk Bounds of Multi-Pass SGD for Least Squares in the Interpolation
Regime [127.21287240963859]
gradient descent (SGD) has achieved great success due to its superior performance in both optimization and generalization.
This paper aims to sharply characterize the generalization of multi-pass SGD.
We show that although SGD needs more than GD to achieve the same level of excess risk, it saves the number of gradient evaluations.
arXiv Detail & Related papers (2022-03-07T06:34:53Z) - Benign Underfitting of Stochastic Gradient Descent [72.38051710389732]
We study to what extent may gradient descent (SGD) be understood as a "conventional" learning rule that achieves generalization performance by obtaining a good fit training data.
We analyze the closely related with-replacement SGD, for which an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate.
arXiv Detail & Related papers (2022-02-27T13:25:01Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - The Benefits of Implicit Regularization from SGD in Least Squares
Problems [116.85246178212616]
gradient descent (SGD) exhibits strong algorithmic regularization effects in practice.
We make comparisons of the implicit regularization afforded by (unregularized) average SGD with the explicit regularization of ridge regression.
arXiv Detail & Related papers (2021-08-10T09:56:47Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.