Neural Loss Function Evolution for Large-Scale Image Classifier Convolutional Neural Networks
- URL: http://arxiv.org/abs/2403.08793v1
- Date: Tue, 30 Jan 2024 17:21:28 GMT
- Title: Neural Loss Function Evolution for Large-Scale Image Classifier Convolutional Neural Networks
- Authors: Brandon Morgan, Dean Hougen,
- Abstract summary: For classification, neural networks learn by minimizing cross-entropy, but are evaluated and compared using accuracy.
This disparity suggests neural loss function search (NLFS), the search for a drop-in replacement loss function of cross-entropy for neural networks.
We propose a new search space for NLFS that encourages more diverse loss functions to be explored.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For classification, neural networks typically learn by minimizing cross-entropy, but are evaluated and compared using accuracy. This disparity suggests neural loss function search (NLFS), the search for a drop-in replacement loss function of cross-entropy for neural networks. We apply NLFS to image classifier convolutional neural networks. We propose a new search space for NLFS that encourages more diverse loss functions to be explored, and a surrogate function that accurately transfers to large-scale convolutional neural networks. We search the space using regularized evolution, a mutation-only aging genetic algorithm. After evolution and a proposed loss function elimination protocol, we transferred the final loss functions across multiple architectures, datasets, and image augmentation techniques to assess generalization. In the end, we discovered three new loss functions, called NeuroLoss1, NeuroLoss2, and NeuroLoss3 that were able to outperform cross-entropy in terms of a higher mean test accuracy as a simple drop-in replacement loss function across the majority of experiments.
Related papers
- Loss Jump During Loss Switch in Solving PDEs with Neural Networks [11.123662745891677]
Using neural networks to solve partial differential equations (PDEs) is gaining popularity as an alternative approach in the scientific computing community.
This work focuses on investigating how different loss functions impact the training of neural networks for solving PDEs.
arXiv Detail & Related papers (2024-05-06T01:18:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Towards Generalization in Subitizing with Neuro-Symbolic Loss using
Holographic Reduced Representations [49.22640185566807]
We show that adapting tools used in CogSci research can improve the subitizing generalization of CNNs and ViTs.
We investigate how this neuro-symbolic approach to learning affects the subitizing capability of CNNs and ViTs.
We find that ViTs perform considerably worse compared to CNNs in most respects on subitizing, except on one axis where an HRR-based loss provides improvement.
arXiv Detail & Related papers (2023-12-23T17:54:03Z) - A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree
Spectral Bias of Neural Networks [79.28094304325116]
Despite the capacity of neural nets to learn arbitrary functions, models trained through gradient descent often exhibit a bias towards simpler'' functions.
We show how this spectral bias towards low-degree frequencies can in fact hurt the neural network's generalization on real-world datasets.
We propose a new scalable functional regularization scheme that aids the neural network to learn higher degree frequencies.
arXiv Detail & Related papers (2023-05-16T20:06:01Z) - Optimal rates of approximation by shallow ReLU$^k$ neural networks and
applications to nonparametric regression [12.21422686958087]
We study the approximation capacity of some variation spaces corresponding to shallow ReLU$k$ neural networks.
For functions with less smoothness, the approximation rates in terms of the variation norm are established.
We show that shallow neural networks can achieve the minimax optimal rates for learning H"older functions.
arXiv Detail & Related papers (2023-04-04T06:35:02Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
We consider the mean squared error analysis for deep convolutional neural networks.
We show that, for additive ridge functions, convolutional neural networks followed by one fully connected layer with ReLU activation functions can reach optimal mini-max rates.
arXiv Detail & Related papers (2022-02-24T14:22:32Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
Deep convolutional neural networks have achieved unprecedented performance in various computer vision tasks.
We propose a sparse coding interpretation of neural networks that have ReLU activation.
We derive a complete convolutional neural network without normalization and pooling.
arXiv Detail & Related papers (2021-08-14T21:54:47Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.