Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning
- URL: http://arxiv.org/abs/2403.08806v1
- Date: Tue, 6 Feb 2024 11:35:05 GMT
- Title: Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning
- Authors: Sarwar Khan,
- Abstract summary: Deepfake technology has raised concerns about the authenticity of digital content, necessitating the development of effective detection methods.
Adversaries can manipulate deepfake videos with small, imperceptible perturbations that can deceive the detection models into producing incorrect outputs.
We introduce Adversarial Feature Similarity Learning (AFSL), which integrates three fundamental deep feature learning paradigms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake technology has raised concerns about the authenticity of digital content, necessitating the development of effective detection methods. However, the widespread availability of deepfakes has given rise to a new challenge in the form of adversarial attacks. Adversaries can manipulate deepfake videos with small, imperceptible perturbations that can deceive the detection models into producing incorrect outputs. To tackle this critical issue, we introduce Adversarial Feature Similarity Learning (AFSL), which integrates three fundamental deep feature learning paradigms. By optimizing the similarity between samples and weight vectors, our approach aims to distinguish between real and fake instances. Additionally, we aim to maximize the similarity between both adversarially perturbed examples and unperturbed examples, regardless of their real or fake nature. Moreover, we introduce a regularization technique that maximizes the dissimilarity between real and fake samples, ensuring a clear separation between these two categories. With extensive experiments on popular deepfake datasets, including FaceForensics++, FaceShifter, and DeeperForensics, the proposed method outperforms other standard adversarial training-based defense methods significantly. This further demonstrates the effectiveness of our approach to protecting deepfake detectors from adversarial attacks.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Real is not True: Backdoor Attacks Against Deepfake Detection [9.572726483706846]
We introduce a pioneering paradigm denominated as Bad-Deepfake, which represents a novel foray into the realm of backdoor attacks levied against deepfake detectors.
Our approach hinges upon the strategic manipulation of a subset of the training data, enabling us to wield disproportionate influence over the operational characteristics of a trained model.
arXiv Detail & Related papers (2024-03-11T10:57:14Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Real-centric Consistency Learning for Deepfake Detection [8.313889744011933]
We tackle the deepfake detection problem through learning the invariant representations of both classes.
We propose a novel forgery semantical-based pairing strategy to mine latent generation-related features.
At the feature level, based on the centers of natural faces at the representation space, we design a hard positive mining and synthesizing method to simulate the potential marginal features.
arXiv Detail & Related papers (2022-05-15T07:01:28Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
Deepfake techniques in real-world scenarios require stronger generalization abilities of face forgery detectors.
Inspired by transfer learning, neural networks pre-trained on other large-scale face-related tasks may provide useful features for deepfake detection.
In this paper, we propose a self-supervised transformer based audio-visual contrastive learning method.
arXiv Detail & Related papers (2022-03-02T17:44:40Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
We propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions.
Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines.
arXiv Detail & Related papers (2021-09-13T03:31:20Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
We find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence.
We propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts.
arXiv Detail & Related papers (2021-02-23T09:55:03Z) - Adversarial Threats to DeepFake Detection: A Practical Perspective [12.611342984880826]
We study the vulnerabilities of state-of-the-art DeepFake detection methods from a practical stand point.
We create more accessible attacks using Universal Adversarial Perturbations which pose a very feasible attack scenario.
arXiv Detail & Related papers (2020-11-19T16:53:38Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.