Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM
- URL: http://arxiv.org/abs/2403.08818v1
- Date: Mon, 19 Feb 2024 23:48:40 GMT
- Title: Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM
- Authors: Hejie Cui, Xinyu Fang, Ran Xu, Xuan Kan, Joyce C. Ho, Carl Yang,
- Abstract summary: We propose a new framework called MINGLE, which integrates both structures and semantics in EHR effectively.
Our framework uses a two-level infusion strategy to combine medical concept semantics and clinical note semantics into hypergraph neural networks.
Experiment results on two EHR datasets, the public MIMIC-III and private CRADLE, show that MINGLE can effectively improve predictive performance by 11.83% relatively.
- Score: 39.25272553560425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic Health Records (EHRs) have become increasingly popular to support clinical decision-making and healthcare in recent decades. EHRs usually contain heterogeneous information, such as structural data in tabular form and unstructured data in textual notes. Different types of information in EHRs can complement each other and provide a more complete picture of the health status of a patient. While there has been a lot of research on representation learning of structured EHR data, the fusion of different types of EHR data (multimodal fusion) is not well studied. This is mostly because of the complex medical coding systems used and the noise and redundancy present in the written notes. In this work, we propose a new framework called MINGLE, which integrates both structures and semantics in EHR effectively. Our framework uses a two-level infusion strategy to combine medical concept semantics and clinical note semantics into hypergraph neural networks, which learn the complex interactions between different types of data to generate visit representations for downstream prediction. Experiment results on two EHR datasets, the public MIMIC-III and private CRADLE, show that MINGLE can effectively improve predictive performance by 11.83% relatively, enhancing semantic integration as well as multimodal fusion for structural and textual EHR data.
Related papers
- Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGE is a Retrieval-Augmented Generation driven framework aimed at enhancing multimodal EHR predictive modeling.
Our approach extracts entities from both time-series data and clinical notes by prompting Large Language Models.
The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
arXiv Detail & Related papers (2024-05-27T10:53:15Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements.
We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods.
arXiv Detail & Related papers (2024-03-20T05:50:04Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Graph-Text Multi-Modal Pre-training for Medical Representation Learning [7.403725826586844]
We present MedGTX, a pre-trained model for multi-modal representation learning of structured and textual EHR data.
We pre-train our model through four proxy tasks on MIMIC-III, an open-source EHR data.
The results consistently show the effectiveness of pre-training the model for joint representation of both structured and unstructured information from EHR.
arXiv Detail & Related papers (2022-03-18T14:45:42Z) - Two heads are better than one: Enhancing medical representations by
pre-training over structured and unstructured electronic health records [23.379185792773875]
We propose a unified deep learning-based medical pre-trained language model, named UMM-PLM, to automatically learn representative features from multimodal EHRs.
We first developed parallel unimodal information representation modules to capture the unimodal-specific characteristic, where unimodal representations were learned from each data source separately.
A cross-modal module was further introduced to model the interactions between different modalities.
arXiv Detail & Related papers (2022-01-25T06:14:49Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.