ProSwitch: Knowledge-Guided Instruction Tuning to Switch Between Professional and Non-Professional Responses
- URL: http://arxiv.org/abs/2403.09131v5
- Date: Thu, 12 Dec 2024 09:22:14 GMT
- Title: ProSwitch: Knowledge-Guided Instruction Tuning to Switch Between Professional and Non-Professional Responses
- Authors: Chang Zong, Yuyan Chen, Weiming Lu, Jian Shao, Yongfeng Huang, Heng Chang, Yueting Zhuang,
- Abstract summary: Large Language Models (LLMs) have demonstrated efficacy in various linguistic applications.<n>This study introduces a novel approach, named ProSwitch, which enables a language model to switch between professional and non-professional answers.
- Score: 56.949741308866535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated efficacy in various linguistic applications, including question answering and controlled text generation. However, studies into their ability to switch between opposite styles of responses in professional domains remain underexplored. This study introduces a novel approach, named ProSwitch, which enables a language model to switch between professional and non-professional answers, by tuning and evaluating through the guidance of domain and style knowledge. ProSwitch unfolds in three phases: LLM-augmented preparation to collect domain knowledge and QA pairs, instruction tuning to optimize LLMs with multiple levels of knowledge, and comprehensive evaluation to assess both style discrimination and reference-based quality of the generated text. Comparative analysis of ProSwitch against general and specialized LLMs reveals that our approach outperforms baselines in switching between professional and non-professional responses.
Related papers
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.
With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.
We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
We propose a Mixture of Rule Experts guided by a Large Language Model (MoRE-LLM)
MoRE-LLM steers the discovery of local rule-based surrogates during training and their utilization for the classification task.
LLM is responsible for enhancing the domain knowledge alignment of the rules by correcting and contextualizing them.
arXiv Detail & Related papers (2025-03-26T11:09:21Z) - Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation.
Their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis.
To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge.
arXiv Detail & Related papers (2025-02-15T07:43:43Z) - Probing Large Language Models in Reasoning and Translating Complex Linguistic Puzzles [0.6144680854063939]
This paper investigates the utilization of Large Language Models (LLMs) for solving complex linguistic puzzles.
Using datasets from the Puzzling Machine Competition and various Linguistics Olympiads, we employ a comprehensive set of metrics to assess the performance of GPT-4 0603.
arXiv Detail & Related papers (2025-02-02T14:53:14Z) - Boosting Code-Switching ASR with Mixture of Experts Enhanced Speech-Conditioned LLM [1.3089936156875277]
We introduce a speech-conditioned Large Language Model (LLM) integrated with a Mixture of Experts (MoE) based connector.
We propose an Insertion and Deletion of Interruption Token (IDIT) mechanism for better transfer text generation ability of LLM to speech recognition task.
We also present a connecter with MoE architecture that manages multiple languages efficiently.
arXiv Detail & Related papers (2024-09-24T09:20:22Z) - Cross-Lingual Multi-Hop Knowledge Editing -- Benchmarks, Analysis and a Simple Contrastive Learning based Approach [53.028586843468915]
We propose the Cross-Lingual Multi-Hop Knowledge Editing paradigm, for measuring and analyzing the performance of various SoTA knowledge editing techniques in a cross-lingual setup.
Specifically, we create a parallel cross-lingual benchmark, CROLIN-MQUAKE for measuring the knowledge editing capabilities.
Following this, we propose a significantly improved system for cross-lingual multi-hop knowledge editing, CLEVER-CKE.
arXiv Detail & Related papers (2024-07-14T17:18:16Z) - Exploring Advanced Large Language Models with LLMsuite [1.2058143465239939]
This tutorial explores the advancements and challenges in the development of Large Language Models.
It proposes solutions like Retrieval Augmented Generation (RAG), Program-Aided Language Models (PAL), and frameworks such as ReAct and LangChain.
arXiv Detail & Related papers (2024-07-01T05:37:17Z) - Human-AI Collaborative Taxonomy Construction: A Case Study in Profession-Specific Writing Assistants [17.088117195986758]
Large Language Models (LLMs) have assisted humans in several writing tasks, including text revision and story generation.
We propose an approach of human-AI collaborative taxonomy development to perform as a guideline for domain-specific writing assistants.
arXiv Detail & Related papers (2024-06-26T18:25:06Z) - CourseGPT-zh: an Educational Large Language Model Based on Knowledge Distillation Incorporating Prompt Optimization [22.080563239179618]
Large language models (LLMs) have demonstrated astonishing capabilities in natural language processing (NLP) tasks.
We propose CourseGPT-zh, a course-oriented education LLM that supports customization and low-cost deployment.
arXiv Detail & Related papers (2024-05-08T03:11:12Z) - Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
The article sheds light on the mechanics of in-context learning and a spectrum of fine-tuning approaches.
It explores how LLMs can be more closely aligned with human preferences through innovative reinforcement learning frameworks.
The ethical dimensions of LLM deployment are discussed, underscoring the need for mindful and responsible application.
arXiv Detail & Related papers (2024-04-18T08:01:20Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Towards Understanding Counseling Conversations: Domain Knowledge and
Large Language Models [22.588557390720236]
This paper proposes a systematic approach to examine the efficacy of domain knowledge and large language models (LLMs) in better representing counseling conversations.
We empirically show that state-of-the-art language models such as Transformer-based models and GPT models fail to predict the conversation outcome.
arXiv Detail & Related papers (2024-02-22T01:02:37Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
We propose a Learning to Edit (LTE) framework, focusing on teaching large language models to apply updated knowledge into input questions.
LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits.
We demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds.
arXiv Detail & Related papers (2024-02-19T07:45:17Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
Large Language Models such as ChatGPT have showcased remarkable abilities in solving general tasks.
We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders.
We analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results.
arXiv Detail & Related papers (2024-01-10T08:28:56Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - A Practical Survey on Zero-shot Prompt Design for In-context Learning [0.0]
Large language models (LLMs) have brought about significant improvements in Natural Language Processing(NLP) tasks.
This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts.
We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods.
arXiv Detail & Related papers (2023-09-22T23:00:34Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
This paper surveys research works in the quickly advancing field of instruction tuning (IT)
In this paper, unless specified otherwise, instruction tuning (IT) will be equivalent to supervised fine-tuning (SFT)
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.