DA-PFL: Dynamic Affinity Aggregation for Personalized Federated Learning
- URL: http://arxiv.org/abs/2403.09284v1
- Date: Thu, 14 Mar 2024 11:12:10 GMT
- Title: DA-PFL: Dynamic Affinity Aggregation for Personalized Federated Learning
- Authors: Xu Yang, Jiyuan Feng, Songyue Guo, Ye Wang, Ye Ding, Binxing Fang, Qing Liao,
- Abstract summary: Existing personalized federated learning models prefer to aggregate similar clients with similar data distribution to improve the performance of learning models.
We propose a novel Dynamic Affinity-based Personalized Federated Learning model (DA-PFL) to alleviate the class imbalanced problem.
- Score: 13.393529840544117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized federated learning becomes a hot research topic that can learn a personalized learning model for each client. Existing personalized federated learning models prefer to aggregate similar clients with similar data distribution to improve the performance of learning models. However, similaritybased personalized federated learning methods may exacerbate the class imbalanced problem. In this paper, we propose a novel Dynamic Affinity-based Personalized Federated Learning model (DA-PFL) to alleviate the class imbalanced problem during federated learning. Specifically, we build an affinity metric from a complementary perspective to guide which clients should be aggregated. Then we design a dynamic aggregation strategy to dynamically aggregate clients based on the affinity metric in each round to reduce the class imbalanced risk. Extensive experiments show that the proposed DA-PFL model can significantly improve the accuracy of each client in three real-world datasets with state-of-the-art comparison methods.
Related papers
- FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) is a distributed machine learning paradigm that achieves a globally robust model through decentralized computation and periodic model synthesis.
Despite their wide adoption, existing FL and PFL works have yet to comprehensively address the class-imbalance issue.
We propose FedReMa, an efficient PFL algorithm that can tackle class-imbalance by utilizing an adaptive inter-client co-learning approach.
arXiv Detail & Related papers (2024-11-04T05:44:28Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - Enhancing One-Shot Federated Learning Through Data and Ensemble
Co-Boosting [76.64235084279292]
One-shot Federated Learning (OFL) has become a promising learning paradigm, enabling the training of a global server model via a single communication round.
We introduce a novel framework, Co-Boosting, in which synthesized data and the ensemble model mutually enhance each other progressively.
arXiv Detail & Related papers (2024-02-23T03:15:10Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FedDWA: Personalized Federated Learning with Dynamic Weight Adjustment [20.72576355616359]
We propose a new PFL algorithm called emphFedDWA (Federated Learning with Dynamic Weight Adjustment) to address the problem.
FedDWA computes personalized aggregation weights based on collected models from clients.
We conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.
arXiv Detail & Related papers (2023-05-10T13:12:07Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Self-Aware Personalized Federated Learning [32.97492968378679]
We develop a self-aware personalized federated learning (FL) method inspired by Bayesian hierarchical models.
Our method uses uncertainty-driven local training steps and aggregation rule instead of conventional local fine-tuning and sample size-based aggregation.
With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance.
arXiv Detail & Related papers (2022-04-17T19:02:25Z) - Parameterized Knowledge Transfer for Personalized Federated Learning [11.223753730705374]
We propose a novel training framework to employ personalized models for different clients.
It is demonstrated that the proposed framework is the first federated learning paradigm that realizes personalized model training.
arXiv Detail & Related papers (2021-11-04T13:41:45Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.