B-AVIBench: Towards Evaluating the Robustness of Large Vision-Language Model on Black-box Adversarial Visual-Instructions
- URL: http://arxiv.org/abs/2403.09346v2
- Date: Sat, 28 Dec 2024 07:32:00 GMT
- Title: B-AVIBench: Towards Evaluating the Robustness of Large Vision-Language Model on Black-box Adversarial Visual-Instructions
- Authors: Hao Zhang, Wenqi Shao, Hong Liu, Yongqiang Ma, Ping Luo, Yu Qiao, Nanning Zheng, Kaipeng Zhang,
- Abstract summary: Large Vision-Language Models (LVLMs) have shown significant progress in responding well to visual-instructions from users.
These instructions, encompassing images and text, are susceptible to both intentional and inadvertent attacks.
We introduce B-AVIBench, a framework designed to analyze the robustness of LVLMs when facing various Black-box Adrial Visual-Instructions.
- Score: 73.97665608366447
- License:
- Abstract: Large Vision-Language Models (LVLMs) have shown significant progress in responding well to visual-instructions from users. However, these instructions, encompassing images and text, are susceptible to both intentional and inadvertent attacks. Despite the critical importance of LVLMs' robustness against such threats, current research in this area remains limited. To bridge this gap, we introduce B-AVIBench, a framework designed to analyze the robustness of LVLMs when facing various Black-box Adversarial Visual-Instructions (B-AVIs), including four types of image-based B-AVIs, ten types of text-based B-AVIs, and nine types of content bias B-AVIs (such as gender, violence, cultural, and racial biases, among others). We generate 316K B-AVIs encompassing five categories of multimodal capabilities (ten tasks) and content bias. We then conduct a comprehensive evaluation involving 14 open-source LVLMs to assess their performance. B-AVIBench also serves as a convenient tool for practitioners to evaluate the robustness of LVLMs against B-AVIs. Our findings and extensive experimental results shed light on the vulnerabilities of LVLMs, and highlight that inherent biases exist even in advanced closed-source LVLMs like GeminiProVision and GPT-4V. This underscores the importance of enhancing the robustness, security, and fairness of LVLMs. The source code and benchmark are available at https://github.com/zhanghao5201/B-AVIBench.
Related papers
- Retention Score: Quantifying Jailbreak Risks for Vision Language Models [60.48306899271866]
Vision-Language Models (VLMs) are integrated with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities.
This paper aims to assess the resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs.
To evaluate a VLM's ability to maintain its robustness against adversarial input perturbations, we propose a novel metric called the textbfRetention Score.
arXiv Detail & Related papers (2024-12-23T13:05:51Z) - MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection [107.15164718585666]
We investigate the root cause of VLMs' biased prediction under the open vocabulary detection context.
Our observations lead to a simple yet effective paradigm, coded MarvelOVD, that generates significantly better training targets.
Our method outperforms the other state-of-the-arts by significant margins.
arXiv Detail & Related papers (2024-07-31T09:23:57Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models [39.56233272612982]
Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to jailbreaking attacks.
Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning.
To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories.
arXiv Detail & Related papers (2024-02-03T16:43:42Z) - How Many Unicorns Are in This Image? A Safety Evaluation Benchmark for
Vision LLMs [55.91371032213854]
This work focuses on the potential of Vision LLMs (VLLMs) in visual reasoning.
We introduce a comprehensive safety evaluation suite, covering both out-of-distribution (OOD) generalization and adversarial robustness.
arXiv Detail & Related papers (2023-11-27T18:59:42Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.