GiT: Towards Generalist Vision Transformer through Universal Language Interface
- URL: http://arxiv.org/abs/2403.09394v1
- Date: Thu, 14 Mar 2024 13:47:41 GMT
- Title: GiT: Towards Generalist Vision Transformer through Universal Language Interface
- Authors: Haiyang Wang, Hao Tang, Li Jiang, Shaoshuai Shi, Muhammad Ferjad Naeem, Hongsheng Li, Bernt Schiele, Liwei Wang,
- Abstract summary: This paper proposes a simple, yet effective framework, called GiT, simultaneously applicable for various vision tasks only with a vanilla ViT.
GiT is a multi-task visual model, jointly trained across five representative benchmarks without task-specific fine-tuning.
- Score: 94.33443158125186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a simple, yet effective framework, called GiT, simultaneously applicable for various vision tasks only with a vanilla ViT. Motivated by the universality of the Multi-layer Transformer architecture (e.g, GPT) widely used in large language models (LLMs), we seek to broaden its scope to serve as a powerful vision foundation model (VFM). However, unlike language modeling, visual tasks typically require specific modules, such as bounding box heads for detection and pixel decoders for segmentation, greatly hindering the application of powerful multi-layer transformers in the vision domain. To solve this, we design a universal language interface that empowers the successful auto-regressive decoding to adeptly unify various visual tasks, from image-level understanding (e.g., captioning), over sparse perception (e.g., detection), to dense prediction (e.g., segmentation). Based on the above designs, the entire model is composed solely of a ViT, without any specific additions, offering a remarkable architectural simplification. GiT is a multi-task visual model, jointly trained across five representative benchmarks without task-specific fine-tuning. Interestingly, our GiT builds a new benchmark in generalist performance, and fosters mutual enhancement across tasks, leading to significant improvements compared to isolated training. This reflects a similar impact observed in LLMs. Further enriching training with 27 datasets, GiT achieves strong zero-shot results over various tasks. Due to its simple design, this paradigm holds promise for narrowing the architectural gap between vision and language. Code and models will be available at \url{https://github.com/Haiyang-W/GiT}.
Related papers
- Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - General Object Foundation Model for Images and Videos at Scale [99.2806103051613]
We present GLEE, an object-level foundation model for locating and identifying objects in images and videos.
GLEE accomplishes detection, segmentation, tracking, grounding, and identification of arbitrary objects in the open world scenario.
We employ an image encoder, text encoder, and visual prompter to handle multi-modal inputs, enabling to simultaneously solve various object-centric downstream tasks.
arXiv Detail & Related papers (2023-12-14T17:26:00Z) - Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and
Vision-Language Tasks [86.66733026149892]
We propose Uni-Perceiver v2, which is the first generalist model capable of handling major large-scale vision and vision-gnostic tasks.
Specifically, images are encoded as general region proposals, while texts are encoded via a Transformer-based language model.
Uni-Perceiver v2 achieves competitive performance on a broad range of vision and vision-language tasks.
arXiv Detail & Related papers (2022-11-17T18:59:52Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks.
Our framework encodes the input image into a shared representation and makes predictions for each vision task using task-specific transformer-based decoder heads.
arXiv Detail & Related papers (2022-05-17T13:03:18Z) - A Simple Single-Scale Vision Transformer for Object Localization and
Instance Segmentation [79.265315267391]
We propose a simple and compact ViT architecture called Universal Vision Transformer (UViT)
UViT achieves strong performance on object detection and instance segmentation tasks.
arXiv Detail & Related papers (2021-12-17T20:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.