MambaTalk: Efficient Holistic Gesture Synthesis with Selective State Space Models
- URL: http://arxiv.org/abs/2403.09471v2
- Date: Wed, 25 Sep 2024 18:33:37 GMT
- Title: MambaTalk: Efficient Holistic Gesture Synthesis with Selective State Space Models
- Authors: Zunnan Xu, Yukang Lin, Haonan Han, Sicheng Yang, Ronghui Li, Yachao Zhang, Xiu Li,
- Abstract summary: We introduce MambaTalk, enhancing gesture diversity and rhythm through multimodal integration.
Our method matches or exceeds the performance of state-of-the-art models.
- Score: 22.044020889631188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging applications across various fields like film, robotics, and virtual reality. Recent advancements have utilized the diffusion model and attention mechanisms to improve gesture synthesis. However, due to the high computational complexity of these techniques, generating long and diverse sequences with low latency remains a challenge. We explore the potential of state space models (SSMs) to address the challenge, implementing a two-stage modeling strategy with discrete motion priors to enhance the quality of gestures. Leveraging the foundational Mamba block, we introduce MambaTalk, enhancing gesture diversity and rhythm through multimodal integration. Extensive experiments demonstrate that our method matches or exceeds the performance of state-of-the-art models.
Related papers
- MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - A Unified Framework for Multimodal, Multi-Part Human Motion Synthesis [17.45562922442149]
We introduce a cohesive and scalable approach that consolidates multimodal (text, music, speech) and multi-part (hand, torso) human motion generation.
Our method frames the multimodal motion generation challenge as a token prediction task, drawing from specialized codebooks based on the modality of the control signal.
arXiv Detail & Related papers (2023-11-28T04:13:49Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Stochastic Multi-Person 3D Motion Forecasting [21.915057426589744]
We deal with the ignored real-world complexities in prior work on human motion forecasting.
Our framework is general; we instantiate it with different generative models.
Our approach produces diverse and accurate multi-person predictions, significantly outperforming the state of the art.
arXiv Detail & Related papers (2023-06-08T17:59:09Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - Unifying Human Motion Synthesis and Style Transfer with Denoising
Diffusion Probabilistic Models [9.789705536694665]
Generating realistic motions for digital humans is a core but challenging part of computer animations and games.
We propose a denoising diffusion model solution for styled motion synthesis.
We design a multi-task architecture of diffusion model that strategically generates aspects of human motions for local guidance.
arXiv Detail & Related papers (2022-12-16T15:15:34Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
We propose a Motion Latent-based Diffusion model (MLD) to produce vivid motion sequences conforming to the given conditional inputs.
Our MLD achieves significant improvements over the state-of-the-art methods among extensive human motion generation tasks.
arXiv Detail & Related papers (2022-12-08T03:07:00Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - Dynamic Future Net: Diversified Human Motion Generation [31.987602940970888]
Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality.
We present Dynamic Future Net, a new deep learning model where we explicitly focuses on the intrinsic motionity of human motion dynamics.
Our model can generate a large number of high-quality motions with arbitrary duration, and visuallyincing variations in both space and time.
arXiv Detail & Related papers (2020-08-25T02:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.