Cloud gap-filling with deep learning for improved grassland monitoring
- URL: http://arxiv.org/abs/2403.09554v1
- Date: Thu, 14 Mar 2024 16:41:26 GMT
- Title: Cloud gap-filling with deep learning for improved grassland monitoring
- Authors: Iason Tsardanidis, Alkiviadis Koukos, Vasileios Sitokonstantinou, Thanassis Drivas, Charalampos Kontoes,
- Abstract summary: Uninterrupted optical image time series are crucial for the timely monitoring of agricultural land changes.
We propose a deep learning method that integrates cloud-free optical (Sentinel-2) observations and weather-independent (Sentinel-1) Synthetic Aperture Radar (SAR) data.
- Score: 2.9272689981427407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uninterrupted optical image time series are crucial for the timely monitoring of agricultural land changes. However, the continuity of such time series is often disrupted by clouds. In response to this challenge, we propose a deep learning method that integrates cloud-free optical (Sentinel-2) observations and weather-independent (Sentinel-1) Synthetic Aperture Radar (SAR) data, using a combined Convolutional Neural Network (CNN)-Recurrent Neural Network (RNN) architecture to generate continuous Normalized Difference Vegetation Index (NDVI) time series. We emphasize the significance of observation continuity by assessing the impact of the generated time series on the detection of grassland mowing events. We focus on Lithuania, a country characterized by extensive cloud coverage, and compare our approach with alternative interpolation techniques (i.e., linear, Akima, quadratic). Our method surpasses these techniques, with an average MAE of 0.024 and R^2 of 0.92. It not only improves the accuracy of event detection tasks by employing a continuous time series, but also effectively filters out sudden shifts and noise originating from cloudy observations that cloud masks often fail to detect.
Related papers
- EC-Diff: Fast and High-Quality Edge-Cloud Collaborative Inference for Diffusion Models [57.059991285047296]
hybrid edge-cloud collaborative framework was recently proposed to realize fast inference and high-quality generation.<n>Excessive cloud denoising prolongs inference time, while insufficient steps cause semantic ambiguity, leading to inconsistency in edge model output.<n>We propose EC-Diff that accelerates cloud inference through gradient-based noise estimation.<n>Our method significantly enhances generation quality compared to edge inference, while achieving up to an average $2times$ speedup in inference compared to cloud inference.
arXiv Detail & Related papers (2025-07-16T07:23:14Z) - Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds [1.0104586293349587]
We tackle the problem of Open-set Gait Recognition from sparse mmWave radar point clouds.<n>This is the first work addressing open-set gait recognition with sparse point cloud data.<n>We release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects.
arXiv Detail & Related papers (2025-03-10T15:18:10Z) - A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies.<n>This paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework.
arXiv Detail & Related papers (2025-02-25T04:34:18Z) - ResFlow: Fine-tuning Residual Optical Flow for Event-based High Temporal Resolution Motion Estimation [50.80115710105251]
Event cameras hold significant promise for high-temporal-resolution (HTR) motion estimation.<n>We propose a residual-based paradigm for estimating HTR optical flow with event data.
arXiv Detail & Related papers (2024-12-12T09:35:47Z) - Fast Learning of Signed Distance Functions from Noisy Point Clouds via Noise to Noise Mapping [54.38209327518066]
Learning signed distance functions from point clouds is an important task in 3D computer vision.
We propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision.
Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy observations.
arXiv Detail & Related papers (2024-07-04T03:35:02Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Typhoon Intensity Prediction with Vision Transformer [51.84456610977905]
We introduce "Typhoon Intensity Transformer" (Tint) to predict typhoon intensity accurately across space and time.
Tint uses self-attention mechanisms with global receptive fields per layer.
Experiments on a publicly available typhoon benchmark validate the efficacy of Tint.
arXiv Detail & Related papers (2023-11-28T03:11:33Z) - A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting [1.9950682531209158]
We provide an approach to link time series characteristics with RNN components via the versatile metric of distance correlation.
We empirically show that the RNN activation layers learn the lag structures of time series well.
We also show that the activation layers cannot adequately model moving average and heteroskedastic time series processes.
arXiv Detail & Related papers (2023-07-28T22:32:08Z) - Implicit neural representation for change detection [15.741202788959075]
Most commonly used approaches to detecting changes in point clouds are based on supervised methods.
We propose an unsupervised approach that comprises two components: Implicit Neural Representation (INR) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes.
We apply our method to a benchmark dataset comprising simulated LiDAR point clouds for urban sprawling.
arXiv Detail & Related papers (2023-07-28T09:26:00Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - U-TILISE: A Sequence-to-sequence Model for Cloud Removal in Optical
Satellite Time Series [22.39321609253005]
We develop a neural model that can map a cloud-masked input sequence to a cloud-free output sequence.
We experimentally evaluate the proposed model on a dataset of satellite Sentinel-2 time series acquired all over Europe.
Compared to a standard baseline, it increases the PSNR by 1.8 dB at previously seen locations and by 1.3 dB at unseen locations.
arXiv Detail & Related papers (2023-05-22T17:37:10Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Fusing Optical and SAR time series for LAI gap filling with multioutput
Gaussian processes [6.0122901245834015]
Persistent clouds over agricultural fields can mask key stages of crop growth, leading to unreliable yield predictions.
Synthetic Aperture Radar (SAR) provides all-weather imagery which can potentially overcome this limitation.
We propose the use of Multi-Output Gaussian Process (MOGP) regression, a machine learning technique that learns automatically the statistical relationships among multisensor time series.
arXiv Detail & Related papers (2020-12-05T10:36:45Z) - Crop Classification under Varying Cloud Cover with Neural Ordinary
Differential Equations [23.93148719731374]
State-of-the-art methods for crop classification rely on techniques that implicitly assume regular temporal spacing between observations.
We propose to use neural ordinary differential equations (NODEs) in combination with recurrent neural networks (RNNs) to classify crop types in irregularly spaced image sequences.
arXiv Detail & Related papers (2020-12-04T11:56:50Z) - A Prospective Study on Sequence-Driven Temporal Sampling and Ego-Motion
Compensation for Action Recognition in the EPIC-Kitchens Dataset [68.8204255655161]
Action recognition is one of the top-challenging research fields in computer vision.
ego-motion recorded sequences have become of important relevance.
The proposed method aims to cope with it by estimating this ego-motion or camera motion.
arXiv Detail & Related papers (2020-08-26T14:44:45Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.