GroupContrast: Semantic-aware Self-supervised Representation Learning for 3D Understanding
- URL: http://arxiv.org/abs/2403.09639v1
- Date: Thu, 14 Mar 2024 17:59:59 GMT
- Title: GroupContrast: Semantic-aware Self-supervised Representation Learning for 3D Understanding
- Authors: Chengyao Wang, Li Jiang, Xiaoyang Wu, Zhuotao Tian, Bohao Peng, Hengshuang Zhao, Jiaya Jia,
- Abstract summary: Self-supervised 3D representation learning aims to learn effective representations from large-scale unlabeled point clouds.
We propose GroupContrast, a novel approach that combines segment grouping and semantic-aware contrastive learning.
- Score: 66.5538429726564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised 3D representation learning aims to learn effective representations from large-scale unlabeled point clouds. Most existing approaches adopt point discrimination as the pretext task, which assigns matched points in two distinct views as positive pairs and unmatched points as negative pairs. However, this approach often results in semantically identical points having dissimilar representations, leading to a high number of false negatives and introducing a "semantic conflict" problem. To address this issue, we propose GroupContrast, a novel approach that combines segment grouping and semantic-aware contrastive learning. Segment grouping partitions points into semantically meaningful regions, which enhances semantic coherence and provides semantic guidance for the subsequent contrastive representation learning. Semantic-aware contrastive learning augments the semantic information extracted from segment grouping and helps to alleviate the issue of "semantic conflict". We conducted extensive experiments on multiple 3D scene understanding tasks. The results demonstrate that GroupContrast learns semantically meaningful representations and achieves promising transfer learning performance.
Related papers
- Separating common from salient patterns with Contrastive Representation
Learning [2.250968907999846]
Contrastive Analysis aims at separating common factors of variation between two datasets.
Current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations.
We propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis.
arXiv Detail & Related papers (2024-02-19T08:17:13Z) - Point Contrastive Prediction with Semantic Clustering for
Self-Supervised Learning on Point Cloud Videos [71.20376514273367]
We propose a unified point cloud video self-supervised learning framework for object-centric and scene-centric data.
Our method outperforms supervised counterparts on a wide range of downstream tasks.
arXiv Detail & Related papers (2023-08-18T02:17:47Z) - Associating Spatially-Consistent Grouping with Text-supervised Semantic
Segmentation [117.36746226803993]
We introduce self-supervised spatially-consistent grouping with text-supervised semantic segmentation.
Considering the part-like grouped results, we further adapt a text-supervised model from image-level to region-level recognition.
Our method achieves 59.2% mIoU and 32.4% mIoU on Pascal VOC and Pascal Context benchmarks.
arXiv Detail & Related papers (2023-04-03T16:24:39Z) - Semantic-aware Contrastive Learning for More Accurate Semantic Parsing [32.74456368167872]
We propose a semantic-aware contrastive learning algorithm, which can learn to distinguish fine-grained meaning representations.
Experiments on two standard datasets show that our approach achieves significant improvements over MLE baselines.
arXiv Detail & Related papers (2023-01-19T07:04:32Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - Self-Supervised Learning of Object Parts for Semantic Segmentation [7.99536002595393]
We argue that self-supervised learning of object parts is a solution to this issue.
Our method surpasses the state-of-the-art on three semantic segmentation benchmarks by 17%-3%.
arXiv Detail & Related papers (2022-04-27T17:55:17Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.