Scaling Behavior of Machine Translation with Large Language Models under Prompt Injection Attacks
- URL: http://arxiv.org/abs/2403.09832v1
- Date: Thu, 14 Mar 2024 19:39:10 GMT
- Title: Scaling Behavior of Machine Translation with Large Language Models under Prompt Injection Attacks
- Authors: Zhifan Sun, Antonio Valerio Miceli-Barone,
- Abstract summary: Large Language Models (LLMs) are increasingly becoming the preferred foundation platforms for many Natural Language Processing tasks.
Their generality opens them up to subversion by end users who may embed into their requests instructions that cause the model to behave in unauthorized and possibly unsafe ways.
We study these Prompt Injection Attacks (PIAs) on multiple families of LLMs on a Machine Translation task, focusing on the effects of model size on the attack success rates.
- Score: 4.459306403129608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly becoming the preferred foundation platforms for many Natural Language Processing tasks such as Machine Translation, owing to their quality often comparable to or better than task-specific models, and the simplicity of specifying the task through natural language instructions or in-context examples. Their generality, however, opens them up to subversion by end users who may embed into their requests instructions that cause the model to behave in unauthorized and possibly unsafe ways. In this work we study these Prompt Injection Attacks (PIAs) on multiple families of LLMs on a Machine Translation task, focusing on the effects of model size on the attack success rates. We introduce a new benchmark data set and we discover that on multiple language pairs and injected prompts written in English, larger models under certain conditions may become more susceptible to successful attacks, an instance of the Inverse Scaling phenomenon (McKenzie et al., 2023). To our knowledge, this is the first work to study non-trivial LLM scaling behaviour in a multi-lingual setting.
Related papers
- Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years.
We present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs.
Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task.
arXiv Detail & Related papers (2023-12-20T16:40:33Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
This research examines vocabulary trimming (VT) inspired by restricting embedding entries to the language of interest to bolster time and memory efficiency.
We apply two languages to trim the full vocabulary - Unicode-based script filtering and corpus-based selection - to different language families and sizes.
It is found that VT reduces the memory usage of small models by nearly 50% and has an upper bound of 25% improvement in generation speed.
arXiv Detail & Related papers (2023-11-16T09:35:50Z) - Benchmarking Large Language Model Capabilities for Conditional
Generation [15.437176676169997]
We discuss how to adapt existing application-specific generation benchmarks to PLMs.
We show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages.
arXiv Detail & Related papers (2023-06-29T08:59:40Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
A primary criticism towards language models (LMs) is their inscrutability.
This paper presents evidence that, despite their size and complexity, LMs sometimes exploit a simple vector arithmetic style mechanism to solve some relational tasks.
arXiv Detail & Related papers (2023-05-25T15:04:01Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models.
We show SAP is effective on question answering and summarization.
For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models.
arXiv Detail & Related papers (2022-09-29T01:35:57Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
We trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM.
We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods.
We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks.
arXiv Detail & Related papers (2022-04-05T16:11:45Z) - Examining Scaling and Transfer of Language Model Architectures for
Machine Translation [51.69212730675345]
Language models (LMs) process sequences in a single stack of layers, and encoder-decoder models (EncDec) utilize separate layer stacks for input and output processing.
In machine translation, EncDec has long been the favoured approach, but with few studies investigating the performance of LMs.
arXiv Detail & Related papers (2022-02-01T16:20:15Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing.
Multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer.
Due to this initial success, pre-trained models are being used as Universal Language Models'
arXiv Detail & Related papers (2021-09-15T08:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.