Markovian and non-Markovian master equations versus an exactly solvable model of a qubit in a cavity
- URL: http://arxiv.org/abs/2403.09944v2
- Date: Wed, 27 Mar 2024 05:09:46 GMT
- Title: Markovian and non-Markovian master equations versus an exactly solvable model of a qubit in a cavity
- Authors: Zihan Xia, Juan Garcia-Nila, Daniel Lidar,
- Abstract summary: Quantum master equations are commonly used to model the dynamics of open quantum systems, but their accuracy is rarely compared with the analytical solution of exactly solvable models.
We consider the non-Markovian time-conless master equation up to the second (Redfield) and fourth orders as well as three types of Markovian master equations.
We demonstrate that the coarse-grained master equation outperforms the standard RWA-based Lindblad master equation for weak coupling or high qubit frequency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum master equations are commonly used to model the dynamics of open quantum systems, but their accuracy is rarely compared with the analytical solution of exactly solvable models. In this work, we perform such a comparison for the damped Jaynes-Cummings model of a qubit in a leaky cavity, for which an analytical solution is available in the one-excitation subspace. We consider the non-Markovian time-convolutionless master equation up to the second (Redfield) and fourth orders as well as three types of Markovian master equations: the coarse-grained, cumulant, and standard rotating-wave approximation (RWA) Lindblad equations. We compare the exact solution to these master equations for three different spectral densities: impulse, Ohmic, and triangular. We demonstrate that the coarse-grained master equation outperforms the standard RWA-based Lindblad master equation for weak coupling or high qubit frequency (relative to the spectral density high-frequency cutoff $\omega_c$), where the Markovian approximation is valid. In the presence of non-Markovian effects characterized by oscillatory, non-decaying behavior, the TCL approximation closely matches the exact solution for short evolution times (in units of $\omega_c^{-1}$) even outside the regime of validity of the Markovian approximations. For long evolution times, all master equations perform poorly, as quantified in terms of the trace-norm distance from the exact solution. The fourth-order time-convolutionless master equation achieves the top performance in all cases. Our results highlight the need for reliable approximation methods to describe open-system quantum dynamics beyond the short-time limit.
Related papers
- Quantum Wave Simulation with Sources and Loss Functions [0.0]
This framework encompasses a broad class of wave equations, including the acoustic wave equation, Maxwells equations, and the elastic wave equation.
We show that subspace energies can be extracted and wave fields compared through an $l$-loss function.
We argue that this quartic speed-up is optimal for time domain solutions, as the Hamiltonian of the discretized wave equations has local couplings.
arXiv Detail & Related papers (2024-11-26T17:42:55Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Invalidation of the Bloch-Redfield Equation in Sub-Ohmic Regime via a Practical Time-Convolutionless Fourth-Order Master Equation [0.0]
We optimize the computation of the fourth-order time-convolutionless master equation to meet this need.
Our master equation accounts for simultaneous relaxation and dephasing, resulting in coefficients proportional to the system's spectral density over frequency derivative.
We analyze the approach to a ground state in a generic open quantum system and demonstrate that it is not reliably computed by the Bloch-Redfield equation alone.
arXiv Detail & Related papers (2023-10-23T16:51:25Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Unraveling-paired dynamical maps can recover the input of quantum
channels [0.0]
We show that the "influence martingale" pairs any time-local master equation with a one parameter family of Lindblad-Gorini-Kossakowski-Sudarshan master equations.
Finding the lowest upper bound on the variance of the influence martingale yields an explicit criterion of "optimal pairing"
We use the embedding to reverse a completely positive evolution, a quantum channel, to its initial condition thereby providing a protocol to preserve quantum memory against decoherence.
arXiv Detail & Related papers (2022-09-19T12:26:50Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Universal Lindblad equation for open quantum systems [0.0]
We develop a Markovian master equation in the Lindblad form for studying quantum many-body systems.
The validity of the master equation is based entirely on properties of the bath and the system-bath coupling.
We show how our method can be applied to static or driven quantum many-body systems.
arXiv Detail & Related papers (2020-04-03T11:07:40Z) - Completely Positive, Simple, and Possibly Highly Accurate Approximation
of the Redfield Equation [0.0]
This approximation only truncates terms in the Redfield equation that average out over a time-scale typical of the quantum system.
GAME (geometric-arithmetic adaptable master equation) is between its time-independent, time-dependent, and Floquet form.
In the solvable exactly, three-level, Jaynes-Cummings model, we find that the error of the approximate state is almost an order of magnitude lower than that obtained by solving the coarse-grained master equation.
arXiv Detail & Related papers (2020-03-20T01:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.