Search-based Ordered Password Generation of Autoregressive Neural Networks
- URL: http://arxiv.org/abs/2403.09954v1
- Date: Fri, 15 Mar 2024 01:30:38 GMT
- Title: Search-based Ordered Password Generation of Autoregressive Neural Networks
- Authors: Min Jin, Junbin Ye, Rongxuan Shen, Huaxing Lu,
- Abstract summary: We build SOPGesGPT, a password guessing model based on GPT, using SOPG to generate passwords.
Compared with the most influential models OMEN, FLA, PassGAN, VAEPass, experiments show that SOPGesGPT is far ahead in terms of both effective rate and cover rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Passwords are the most widely used method of authentication and password guessing is the essential part of password cracking and password security research. The progress of deep learning technology provides a promising way to improve the efficiency of password guessing. However, current research on neural network password guessing methods mostly focuses on model structure and has overlooked the generation method. Due to the randomness of sampling, not only the generated passwords have a large number of duplicates, but also the order in which passwords generated is random, leading to inefficient password attacks. In this paper, we propose SOPG, a search-based ordered password generation method, which enables the password guessing model based on autoregressive neural network to generate passwords in approximately descending order of probability. Experiment on comparison of SOPG and Random sampling shows passwords generated by SOPG do not repeat, and when they reach the same cover rate, SOPG requires fewer inferences and far fewer generated passwords than Random sampling, which brings great efficiency improvement to subsequent password attacks. We build SOPGesGPT, a password guessing model based on GPT, using SOPG to generate passwords. Compared with the most influential models OMEN, FLA, PassGAN, VAEPass and the latest model PassGPT in one-site test, experiments show that SOPGesGPT is far ahead in terms of both effective rate and cover rate. As to cover rate that everyone recognizes, SOPGesGPT reaches 35.06%, which is 254%, 298%, 421%, 380%, 81% higher than OMEN, FLA, PassGAN, VAEPass, and PassGPT respectively.
Related papers
- PassTSL: Modeling Human-Created Passwords through Two-Stage Learning [7.287089766975719]
We propose PassTSL (modeling human-created Passwords through Two-Stage Learning), inspired by the popular pretraining-finetuning framework in NLP and deep learning (DL)
PassTSL outperforms five state-of-the-art (SOTA) password cracking methods on password guessing by a significant margin ranging from 4.11% to 64.69% at the maximum point.
Based on PassTSL, we also implemented a password strength meter (PSM), and our experiments showed that it was able to estimate password strength more accurately.
arXiv Detail & Related papers (2024-07-19T09:23:30Z) - Nudging Users to Change Breached Passwords Using the Protection Motivation Theory [58.87688846800743]
We draw on the Protection Motivation Theory (PMT) to design nudges that encourage users to change breached passwords.
Our study contributes to PMT's application in security research and provides concrete design implications for improving compromised credential notifications.
arXiv Detail & Related papers (2024-05-24T07:51:15Z) - PagPassGPT: Pattern Guided Password Guessing via Generative Pretrained Transformer [8.591143235694826]
We present PagPassGPT, a password guessing model constructed on Generative Pretrained Transformer (GPT)
It can perform pattern guided guessing by incorporating pattern structure information as background knowledge, resulting in a significant increase in the hit rate.
We also propose D&C-GEN to reduce the repeat rate of generated passwords, which adopts the concept of a divide-and-conquer approach.
arXiv Detail & Related papers (2024-04-07T09:06:14Z) - Rethinking Model Selection and Decoding for Keyphrase Generation with
Pre-trained Sequence-to-Sequence Models [76.52997424694767]
Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications.
Seq2seq pre-trained language models (PLMs) have ushered in a transformative era for KPG, yielding promising performance improvements.
This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG.
arXiv Detail & Related papers (2023-10-10T07:34:45Z) - PassGPT: Password Modeling and (Guided) Generation with Large Language
Models [59.11160990637616]
We present PassGPT, a large language model trained on password leaks for password generation.
We also introduce the concept of guided password generation, where we leverage PassGPT sampling procedure to generate passwords matching arbitrary constraints.
arXiv Detail & Related papers (2023-06-02T13:49:53Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor.
Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space.
arXiv Detail & Related papers (2023-03-09T11:03:52Z) - Targeted Honeyword Generation with Language Models [5.165256397719443]
Honeywords are fictitious passwords inserted into databases to identify password breaches.
Major difficulty is how to produce honeywords that are difficult to distinguish from real passwords.
arXiv Detail & Related papers (2022-08-15T00:06:29Z) - GNPassGAN: Improved Generative Adversarial Networks For Trawling Offline
Password Guessing [5.165256397719443]
This paper reviews various deep learning-based password guessing approaches.
It also introduces GNPassGAN, a password guessing tool built on generative adversarial networks for trawling offline attacks.
In comparison to the state-of-the-art PassGAN model, GNPassGAN is capable of guessing 88.03% more passwords and generating 31.69% fewer duplicates.
arXiv Detail & Related papers (2022-08-14T23:51:52Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Skeptic: Automatic, Justified and Privacy-Preserving Password Composition Policy Selection [44.040106718326605]
The choice of password composition policy to enforce on a password-protected system represents a critical security decision.
In practice, this choice is not usually rigorous or justifiable, with a tendency for system administrators to choose password composition policies based on intuition alone.
We propose a novel methodology that draws on password probability distributions constructed from large sets of real-world password data.
arXiv Detail & Related papers (2020-07-07T22:12:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.