A de Finetti theorem for quantum causal structures
- URL: http://arxiv.org/abs/2403.10316v2
- Date: Wed, 24 Apr 2024 12:20:01 GMT
- Title: A de Finetti theorem for quantum causal structures
- Authors: Fabio Costa, Jonathan Barrett, Sally Shrapnel,
- Abstract summary: Similar questions for classical probabilities, quantum states, and quantum channels are beautifully answered by so-called "de Finetti theorems"
We extend the result to processes with arbitrary causal structure, including indefinite causal order and multi-time, non-Markovian processes applicable to noisy quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What does it mean for a causal structure to be `unknown'? Can we even talk about `repetitions' of an experiment without prior knowledge of causal relations? And under what conditions can we say that a set of processes with arbitrary, possibly indefinite, causal structure are independent and identically distributed? Similar questions for classical probabilities, quantum states, and quantum channels are beautifully answered by so-called "de Finetti theorems", which connect a simple and easy-to-justify condition -- symmetry under exchange -- with a very particular multipartite structure: a mixture of identical states/channels. Here we extend the result to processes with arbitrary causal structure, including indefinite causal order and multi-time, non-Markovian processes applicable to noisy quantum devices. The result also implies a new class of de Finetti theorems for quantum states subject to a large class of linear constraints, which can be of independent interest.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Admissible Causal Structures and Correlations [0.0]
We study limitations on causal structures and correlations imposed by local quantum theory.
For one, we find a necessary graph theoretic criterion--the "siblings-on-cycles" property--for a causal structure to be admissible.
We show that these causal models, in a restricted setting, are indeed consistent.
arXiv Detail & Related papers (2022-10-23T17:33:47Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum de Finetti Theorems as Categorical Limits, and Limits of State
Spaces of C*-algebras [0.0]
We show that quantum de Finetti construction has a universal property as a categorical limit.
This allows us to pass canonically between categorical treatments of finite dimensional quantum theory and the infinite dimensional.
We also show that the same categorical analysis also justifies a continuous de Finetti theorem for classical probability.
arXiv Detail & Related papers (2022-07-12T20:51:23Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - A convergent inflation hierarchy for quantum causal structures [1.6758573326215689]
A causal structure is a description of the functional dependencies between random variables.
Inflation techniques associate causal structures to a hierarchy of increasingly strict compatibility tests.
In this paper, we construct a first version of the quantum inflation hierarchy that is provably convergent.
arXiv Detail & Related papers (2021-10-27T18:00:02Z) - Quantum chicken-egg dilemmas: Delayed-choice causal order and the
reality of causal non-separability [0.0]
We show that causally indefinite processes can be realised with schemes where C serves only as a classical flag.
We demonstrate that quantum mechanics allows for phenomena where C can deterministically decide whether A comes before B or vice versa.
arXiv Detail & Related papers (2020-08-18T12:03:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.