How Powerful Potential of Attention on Image Restoration?
- URL: http://arxiv.org/abs/2403.10336v1
- Date: Fri, 15 Mar 2024 14:23:12 GMT
- Title: How Powerful Potential of Attention on Image Restoration?
- Authors: Cong Wang, Jinshan Pan, Yeying Jin, Liyan Wang, Wei Wang, Gang Fu, Wenqi Ren, Xiaochun Cao,
- Abstract summary: We conduct an empirical study to explore the potential of attention mechanisms without using FFN.
We propose Continuous Scaling Attention (textbfCSAttn), a method that computes attention continuously in three stages without using FFN.
Our designs provide a closer look at the attention mechanism and reveal that some simple operations can significantly affect the model performance.
- Score: 97.9777639562205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformers have demonstrated their effectiveness in image restoration tasks. Existing Transformer architectures typically comprise two essential components: multi-head self-attention and feed-forward network (FFN). The former captures long-range pixel dependencies, while the latter enables the model to learn complex patterns and relationships in the data. Previous studies have demonstrated that FFNs are key-value memories \cite{geva2020transformer}, which are vital in modern Transformer architectures. In this paper, we conduct an empirical study to explore the potential of attention mechanisms without using FFN and provide novel structures to demonstrate that removing FFN is flexible for image restoration. Specifically, we propose Continuous Scaling Attention (\textbf{CSAttn}), a method that computes attention continuously in three stages without using FFN. To achieve competitive performance, we propose a series of key components within the attention. Our designs provide a closer look at the attention mechanism and reveal that some simple operations can significantly affect the model performance. We apply our \textbf{CSAttn} to several image restoration tasks and show that our model can outperform CNN-based and Transformer-based image restoration approaches.
Related papers
- IPT-V2: Efficient Image Processing Transformer using Hierarchical Attentions [26.09373405194564]
We present an efficient image processing transformer architecture with hierarchical attentions, called IPTV2.
We adopt a focal context self-attention (FCSA) and a global grid self-attention (GGSA) to obtain adequate token interactions in local and global receptive fields.
Our proposed IPT-V2 achieves state-of-the-art results on various image processing tasks, covering denoising, deblurring, deraining and obtains much better trade-off for performance and computational complexity than previous methods.
arXiv Detail & Related papers (2024-03-31T10:01:20Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - HAT: Hybrid Attention Transformer for Image Restoration [61.74223315807691]
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising.
We propose a new Hybrid Attention Transformer (HAT) to activate more input pixels for better restoration.
Our HAT achieves state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-09-11T05:17:55Z) - Learning A Sparse Transformer Network for Effective Image Deraining [42.01684644627124]
We propose an effective DeRaining network, Sparse Transformer (DRSformer)
We develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation.
We equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme.
arXiv Detail & Related papers (2023-03-21T15:41:57Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.