AI-enhanced Collective Intelligence
- URL: http://arxiv.org/abs/2403.10433v4
- Date: Thu, 26 Sep 2024 09:33:29 GMT
- Title: AI-enhanced Collective Intelligence
- Authors: Hao Cui, Taha Yasseri,
- Abstract summary: Humans and AI possess complementary capabilities that can surpass the collective intelligence of either humans or AI in isolation.
This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence.
We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence.
- Score: 2.5063318977668465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current societal challenges exceed the capacity of humans operating either alone or collectively. As AI evolves, its role within human collectives will vary from an assistive tool to a participatory member. Humans and AI possess complementary capabilities that, together, can surpass the collective intelligence of either humans or AI in isolation. However, the interactions in human-AI systems are inherently complex, involving intricate processes and interdependencies. This review incorporates perspectives from complex network science to conceptualize a multilayer representation of human-AI collective intelligence, comprising cognition, physical, and information layers. Within this multilayer network, humans and AI agents exhibit varying characteristics; humans differ in diversity from surface-level to deep-level attributes, while AI agents range in degrees of functionality and anthropomorphism. We explore how agents' diversity and interactions influence the system's collective intelligence and analyze real-world instances of AI-enhanced collective intelligence. We conclude by considering potential challenges and future developments in this field.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
We advocate for a shift toward viewing AI as a learning partner, akin to a student who learns from interactions with humans.
We suggest that a "third mind" emerges through collaborative human-AI relationships.
arXiv Detail & Related papers (2024-10-07T19:19:39Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
I challenge the prevalent narrow conceptualisation of AI as tools, and argue for the importance of alternative conceptualisations of AI.
I highlight the differences between human intelligence and artificial information processing, and posit that AI can also serve as an instrument for understanding human learning.
The paper presents three unique conceptualisations of AI: the externalization of human cognition, the internalization of AI models to influence human mental models, and the extension of human cognition via tightly coupled human-AI hybrid intelligence systems.
arXiv Detail & Related papers (2024-03-24T10:07:46Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Enhancing Human Capabilities through Symbiotic Artificial Intelligence
with Shared Sensory Experiences [6.033393331015051]
We introduce a novel concept in Human-AI interaction called Symbiotic Artificial Intelligence with Shared Sensory Experiences (SAISSE)
SAISSE aims to establish a mutually beneficial relationship between AI systems and human users through shared sensory experiences.
We discuss the incorporation of memory storage units for long-term growth and development of both the AI system and its human user.
arXiv Detail & Related papers (2023-05-26T04:13:59Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.