Simulating quantum field theories on continuous-variable quantum computers
- URL: http://arxiv.org/abs/2403.10619v2
- Date: Wed, 10 Jul 2024 08:50:35 GMT
- Title: Simulating quantum field theories on continuous-variable quantum computers
- Authors: Steven Abel, Michael Spannowsky, Simon Williams,
- Abstract summary: We develop and prove a method to reproduce the time evolution of quantum-mechanical states under arbitrary Hamiltonians.
Our method centres on constructing an evolver-state, a specially prepared quantum state that induces the desired time-evolution on the target state.
We propose a framework in which these methods can be extended to encode field theories in CVQC without discretising the field values.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We delve into the use of photonic quantum computing to simulate quantum mechanics and extend its application towards quantum field theory. We develop and prove a method that leverages this form of Continuous-Variable Quantum Computing (CVQC) to reproduce the time evolution of quantum-mechanical states under arbitrary Hamiltonians, and we demonstrate the method's remarkable efficacy with various potentials. Our method centres on constructing an evolver-state, a specially prepared quantum state that induces the desired time-evolution on the target state. This is achieved by introducing a non-Gaussian operation using a measurement-based quantum computing approach, enhanced by machine learning. Furthermore, we propose a framework in which these methods can be extended to encode field theories in CVQC without discretising the field values, thus preserving the continuous nature of the fields. This opens new avenues for quantum computing applications in quantum field theory.
Related papers
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Universal quantum computation using quantum annealing with the
transverse-field Ising Hamiltonian [0.0]
We present a practical method for implementing universal quantum computation using the transverse-field Ising Hamiltonian.
Our proposal is compatible with D-Wave devices, opening up possibilities for realizing large-scale gate-based quantum computers.
arXiv Detail & Related papers (2024-02-29T12:47:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.