Spiking Neural Networks for Fast-Moving Object Detection on Neuromorphic Hardware Devices Using an Event-Based Camera
- URL: http://arxiv.org/abs/2403.10677v1
- Date: Fri, 15 Mar 2024 20:53:10 GMT
- Title: Spiking Neural Networks for Fast-Moving Object Detection on Neuromorphic Hardware Devices Using an Event-Based Camera
- Authors: Andreas Ziegler, Karl Vetter, Thomas Gossard, Jonas Tebbe, Andreas Zell,
- Abstract summary: We propose a novel solution that combines an event-based camera with Spiking Neural Networks (SNNs) for ball detection.
We implement the SNN solution across multiple neuromorphic edge devices, conducting comparisons of their accuracies and run-times.
Next to this comparison of SNN solutions for robots, we also show that an SNN on a neuromorphic edge device is able to run in real-time in a closed loop robotic system.
- Score: 11.735290341808064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table tennis is a fast-paced and exhilarating sport that demands agility, precision, and fast reflexes. In recent years, robotic table tennis has become a popular research challenge for robot perception algorithms. Fast and accurate ball detection is crucial for enabling a robotic arm to rally the ball back successfully. Previous approaches have employed conventional frame-based cameras with Convolutional Neural Networks (CNNs) or traditional computer vision methods. In this paper, we propose a novel solution that combines an event-based camera with Spiking Neural Networks (SNNs) for ball detection. We use multiple state-of-the-art SNN frameworks and develop a SNN architecture for each of them, complying with their corresponding constraints. Additionally, we implement the SNN solution across multiple neuromorphic edge devices, conducting comparisons of their accuracies and run-times. This furnishes robotics researchers with a benchmark illustrating the capabilities achievable with each SNN framework and a corresponding neuromorphic edge device. Next to this comparison of SNN solutions for robots, we also show that an SNN on a neuromorphic edge device is able to run in real-time in a closed loop robotic system, a table tennis robot in our use case.
Related papers
- Bridging Quantized Artificial Neural Networks and Neuromorphic Hardware [21.100919594341317]
Neuromorphic hardware aims to leverage distributed computing and event-driven circuit design to achieve an energy-efficient AI system.<n>In neuromorphic hardware, neurons use single-bit, event-driven data (called spikes) for inter-communication.<n>We propose a Spiking-Driven ANN framework that directly implements quantized ANN on hardware.
arXiv Detail & Related papers (2025-05-18T03:45:43Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
Spiking Neural Networks (SNNs) are inspired by the sparse and event-driven nature of biological neural processing, and offer the potential for ultra-low-power artificial intelligence.
We explore the hardware-software co-design of sparse SNNs, examining how sparsity representation, hardware architectures, and training techniques influence hardware efficiency.
Our work aims to illuminate the path towards embedded neuromorphic systems that fully exploit the computational advantages of sparse SNNs.
arXiv Detail & Related papers (2024-08-26T17:22:11Z) - NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search [6.006032394972252]
Spiking Neural Networks (SNNs) leverage event-based computation to enable ultra-low power/energy machine learning algorithms.
NeuroNAS is a novel framework for developing energy-efficient neuromorphic IMC for intelligent mobile agents.
arXiv Detail & Related papers (2024-06-30T09:51:58Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Energy-Efficient Deployment of Machine Learning Workloads on
Neuromorphic Hardware [0.11744028458220425]
Several edge deep learning hardware accelerators have been released that specifically focus on reducing the power and area consumed by deep neural networks (DNNs)
Spiked neural networks (SNNs) which operate on discrete time-series data have been shown to achieve substantial power reductions when deployed on specialized neuromorphic event-based/asynchronous hardware.
In this work, we provide a general guide to converting pre-trained DNNs into SNNs while also presenting techniques to improve the deployment of converted SNNs on neuromorphic hardware.
arXiv Detail & Related papers (2022-10-10T20:27:19Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
Spiking neural networks (SNNs) recently gained momentum due to their low-power multiplication-free computing.
SNNs require very long spike trains (up to 1000) to reach an accuracy similar to their artificial neural network (ANN) counterparts for large models.
We present a novel hardware architecture that can efficiently support SNN with emerging neural encoding.
arXiv Detail & Related papers (2022-06-06T10:56:25Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
We propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications.
In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks.
arXiv Detail & Related papers (2022-05-09T14:39:47Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
Convolutional neural networks (CNNs) are now the de facto solution for computer vision problems.
We propose an end-to-end biologically inspired approach using event cameras and spiking neural networks (SNNs)
Our method enables the training of sparse spiking neural networks directly on event data, using the popular deep learning framework PyTorch.
arXiv Detail & Related papers (2021-04-26T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.