Discovering Latent Themes in Social Media Messaging: A Machine-in-the-Loop Approach Integrating LLMs
- URL: http://arxiv.org/abs/2403.10707v2
- Date: Mon, 15 Jul 2024 12:14:13 GMT
- Title: Discovering Latent Themes in Social Media Messaging: A Machine-in-the-Loop Approach Integrating LLMs
- Authors: Tunazzina Islam, Dan Goldwasser,
- Abstract summary: We introduce a novel approach to uncovering latent themes in social media messaging.
Our work sheds light on the dynamic nature of social media, revealing the shifts in the thematic focus of messaging in response to real-world events.
- Score: 22.976609127865732
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Grasping the themes of social media content is key to understanding the narratives that influence public opinion and behavior. The thematic analysis goes beyond traditional topic-level analysis, which often captures only the broadest patterns, providing deeper insights into specific and actionable themes such as "public sentiment towards vaccination", "political discourse surrounding climate policies," etc. In this paper, we introduce a novel approach to uncovering latent themes in social media messaging. Recognizing the limitations of the traditional topic-level analysis, which tends to capture only overarching patterns, this study emphasizes the need for a finer-grained, theme-focused exploration. Traditional theme discovery methods typically involve manual processes and a human-in-the-loop approach. While valuable, these methods face challenges in scalability, consistency, and resource intensity in terms of time and cost. To address these challenges, we propose a machine-in-the-loop approach that leverages the advanced capabilities of Large Language Models (LLMs). To demonstrate our approach, we apply our framework to contentious topics, such as climate debate and vaccine debate. We use two publicly available datasets: (1) the climate campaigns dataset of 21k Facebook ads and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads. Our quantitative and qualitative analysis shows that our methodology yields more accurate and interpretable results compared to the baselines. Our results not only demonstrate the effectiveness of our approach in uncovering latent themes but also illuminate how these themes are tailored for demographic targeting in social media contexts. Additionally, our work sheds light on the dynamic nature of social media, revealing the shifts in the thematic focus of messaging in response to real-world events.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Towards Scalable Topic Detection on Web via Simulating Levy Walks Nature of Topics in Similarity Space [55.97416108140739]
We present a novel, yet very powerful Explore-Exploit (EE) approach to group topics by simulating Levy walks nature in the similarity space.
Experiments on two public data sets demonstrate that our approach is not only comparable to the state-of-the-art methods in terms of effectiveness but also significantly outperforms the state-of-the-art methods in terms of efficiency.
arXiv Detail & Related papers (2024-07-26T07:19:46Z) - Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy [22.976609127865732]
Social media has led to a surge in popularity for automated methods of analyzing public opinion.
Traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances.
We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models.
arXiv Detail & Related papers (2024-04-16T03:26:43Z) - Time Series Analysis of Key Societal Events as Reflected in Complex
Social Media Data Streams [0.9790236766474201]
This study investigates narrative evolution on a niche social media platform GAB and an established messaging service Telegram.
Our approach is a novel mode to study multiple social media domains to distil key information which may be obscured otherwise.
The main findings are: (1) the time line can be deconstructed to provide useful data features allowing for improved interpretation; (2) a methodology is applied which provides a basis for generalization.
arXiv Detail & Related papers (2024-03-11T18:33:56Z) - Social Convos: Capturing Agendas and Emotions on Social Media [1.6385815610837167]
We present a novel approach to extract influence indicators from messages circulating among groups of users discussing particular topics.
We focus on two influence indicators: the (control of) agenda and the use of emotional language.
arXiv Detail & Related papers (2024-02-23T19:14:09Z) - SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
We introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM)
SoMeLVLM is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation.
Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks.
arXiv Detail & Related papers (2024-02-20T14:02:45Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
Developing machine learning models to characterize political polarization on online social media presents significant challenges.
These challenges mainly stem from various factors such as the lack of annotated data, presence of noise in social media datasets, and the sheer volume of data.
We introduce two methods that leverage on news media bias and post content to label social media posts.
We demonstrate that current machine learning models can exhibit improved performance in predicting political orientation of social media posts.
arXiv Detail & Related papers (2023-11-21T03:34:20Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Contextualizing Emerging Trends in Financial News Articles [2.9483477138814287]
We focus on emerging trends detection in financial news articles about Microsoft, collected before and during the start of the COVID-19 pandemic.
We make the dataset accessible and propose a strong baseline for exploring the dynamics of similarities between pairs of keywords.
We evaluate against a gold standard (Google Trends) and present noteworthy real-world scenarios regarding the influence of the pandemic on Microsoft.
arXiv Detail & Related papers (2023-01-20T12:56:52Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
Non-verbal social human behavior forecasting has increasingly attracted the interest of the research community in recent years.
Its direct applications to human-robot interaction and socially-aware human motion generation make it a very attractive field.
We define the behavior forecasting problem for multiple interactive agents in a generic way that aims at unifying the fields of social signals prediction and human motion forecasting.
arXiv Detail & Related papers (2022-03-04T18:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.