Vector search with small radiuses
- URL: http://arxiv.org/abs/2403.10746v1
- Date: Sat, 16 Mar 2024 00:34:25 GMT
- Title: Vector search with small radiuses
- Authors: Gergely Szilvasy, Pierre-Emmanuel Mazaré, Matthijs Douze,
- Abstract summary: This paper focuses on the common case where a hard decision needs to be taken depending on the vector retrieval results.
We show that the value of a range search result can be modeled rigorously based on the query-to-vector distance.
This yields a metric for range search, RSM, that is both principled and easy to compute without running an end-to-end evaluation.
- Score: 10.880913075221361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the dominant accuracy metric for vector search is the recall of a result list of fixed size (top-k retrieval), considering as ground truth the exact vector retrieval results. Although convenient to compute, this metric is distantly related to the end-to-end accuracy of a full system that integrates vector search. In this paper we focus on the common case where a hard decision needs to be taken depending on the vector retrieval results, for example, deciding whether a query image matches a database image or not. We solve this as a range search task, where all vectors within a certain radius from the query are returned. We show that the value of a range search result can be modeled rigorously based on the query-to-vector distance. This yields a metric for range search, RSM, that is both principled and easy to compute without running an end-to-end evaluation. We apply this metric to the case of image retrieval. We show that indexing methods that are adapted for top-k retrieval do not necessarily maximize the RSM. In particular, for inverted file based indexes, we show that visiting a limited set of clusters and encoding vectors compactly yields near optimal results.
Related papers
- Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders [77.84801537608651]
Cross-encoder (CE) models which compute similarity by jointly encoding a query-item pair perform better than embedding-based models (dual-encoders) at estimating query-item relevance.
We propose a sparse-matrix factorization based method that efficiently computes latent query and item embeddings to approximate CE scores and performs k-NN search with the approximate CE similarity.
arXiv Detail & Related papers (2024-05-06T17:14:34Z) - Generative Retrieval as Multi-Vector Dense Retrieval [71.75503049199897]
Generative retrieval generates identifiers of relevant documents in an end-to-end manner.
Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval.
We show that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document.
arXiv Detail & Related papers (2024-03-31T13:29:43Z) - Efficient Data Access Paths for Mixed Vector-Relational Search [8.80592433569832]
Machine learning and the adoption of data processing methods using vector embeddings sparked a great interest in creating systems for vector data management.
While the predominant approach of vector data management is to use specialized index structures for fast search over the entirety of the vector embeddings, once combined with other (meta)data, the search queries can also become selective on relational attributes.
As using vector indexes differs from traditional relational data access, we revisit and analyze alternative access paths for efficient mixed vector-relational search.
arXiv Detail & Related papers (2024-03-23T11:34:17Z) - LeanVec: Searching vectors faster by making them fit [1.0863382547662974]
We present LeanVec, a framework that combines linear dimensionality reduction with vector quantization to accelerate similarity search on high-dimensional vectors.
We show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in search throughput and up to 4.9x faster index build time.
arXiv Detail & Related papers (2023-12-26T21:14:59Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - Group Testing for Accurate and Efficient Range-Based Near Neighbor Search for Plagiarism Detection [2.3814052021083354]
This work presents an adaptive group testing framework for the range-based high dimensional near neighbor search problem.
Our method efficiently marks each item in a database as neighbor or non-neighbor of a query point, based on a cosine distance threshold without exhaustive search.
We show that, using softmax-based features, our method achieves a more than ten-fold speed-up over exhaustive search with no loss of accuracy.
arXiv Detail & Related papers (2023-11-05T06:12:03Z) - Efficient k-NN Search with Cross-Encoders using Adaptive Multi-Round CUR
Decomposition [77.4863142882136]
Cross-encoder models are prohibitively expensive for direct k-nearest neighbor (k-NN) search.
We propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors.
arXiv Detail & Related papers (2023-05-04T17:01:17Z) - Surprise: Result List Truncation via Extreme Value Theory [92.5817701697342]
We propose a statistical method that produces interpretable and calibrated relevance scores at query time using nothing more than the ranked scores.
We demonstrate its effectiveness on the result list truncation task across image, text, and IR datasets.
arXiv Detail & Related papers (2020-10-19T19:15:50Z) - A Practical Index Structure Supporting Fr\'echet Proximity Queries Among
Trajectories [1.9335262420787858]
We present a scalable approach for range and $k$ nearest neighbor queries under computationally expensive metrics.
Based on clustering for metric indexes, we obtain a dynamic tree structure whose size is linear in the number of trajectories.
We analyze the efficiency and effectiveness of our methods with extensive experiments on diverse synthetic and real-world data sets.
arXiv Detail & Related papers (2020-05-28T04:12:43Z) - Choppy: Cut Transformer For Ranked List Truncation [92.58177016973421]
Choppy is an assumption-free model based on the widely successful Transformer architecture.
We show Choppy improves upon recent state-of-the-art methods.
arXiv Detail & Related papers (2020-04-26T00:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.