SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
- URL: http://arxiv.org/abs/2403.10834v1
- Date: Sat, 16 Mar 2024 07:05:47 GMT
- Title: SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
- Authors: Uiwon Hwang, Jonghyun Lee, Juhyeon Shin, Sungroh Yoon,
- Abstract summary: We propose Source-free Domain Adaptation Through the Lens of Data Augmentation (SF(DA)$2$), a novel approach that leverages the benefits of data augmentation without suffering from these challenges.
Our method shows superior adaptation performance in SFDA scenarios, including 2D image and 3D point cloud datasets and a highly imbalanced dataset.
- Score: 35.071201249725426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the face of the deep learning model's vulnerability to domain shift, source-free domain adaptation (SFDA) methods have been proposed to adapt models to new, unseen target domains without requiring access to source domain data. Although the potential benefits of applying data augmentation to SFDA are attractive, several challenges arise such as the dependence on prior knowledge of class-preserving transformations and the increase in memory and computational requirements. In this paper, we propose Source-free Domain Adaptation Through the Lens of Data Augmentation (SF(DA)$^2$), a novel approach that leverages the benefits of data augmentation without suffering from these challenges. We construct an augmentation graph in the feature space of the pretrained model using the neighbor relationships between target features and propose spectral neighborhood clustering to identify partitions in the prediction space. Furthermore, we propose implicit feature augmentation and feature disentanglement as regularization loss functions that effectively utilize class semantic information within the feature space. These regularizers simulate the inclusion of an unlimited number of augmented target features into the augmentation graph while minimizing computational and memory demands. Our method shows superior adaptation performance in SFDA scenarios, including 2D image and 3D point cloud datasets and a highly imbalanced dataset.
Related papers
- Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation [52.36436121884317]
We show that Source-Free Domain Adaptation (SFDA) generally outperforms Unsupervised Domain Adaptation (UDA) in real-world scenarios.
SFDA offers advantages in time efficiency, storage requirements, targeted learning objectives, reduced risk of negative transfer, and increased robustness against overfitting.
We propose a novel weight estimation method that effectively integrates available source data into multi-SFDA approaches.
arXiv Detail & Related papers (2024-11-24T13:49:29Z) - Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain Adaptation using a Gaussian Mixture Model [3.1265626879839923]
In practice, domain shifts are likely to occur between training and test data, necessitating domain adaptation (DA) to adjust the pre-trained source model to the target domain.
UniDA has gained attention for addressing the possibility of an additional category (label) shift between the source and target domain.
We propose a novel method that continuously captures the distribution of known classes in the feature space using a Gaussian mixture model (GMM)
Our approach achieves state-of-the-art results in all experiments on the DomainNet and Office-Home datasets.
arXiv Detail & Related papers (2024-07-19T11:13:31Z) - Progressive Conservative Adaptation for Evolving Target Domains [76.9274842289221]
Conventional domain adaptation typically transfers knowledge from a source domain to a stationary target domain.
Restoring and adapting to such target data results in escalating computational and resource consumption over time.
We propose a simple yet effective approach, termed progressive conservative adaptation (PCAda)
arXiv Detail & Related papers (2024-02-07T04:11:25Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Source-Free Adaptation to Measurement Shift via Bottom-Up Feature
Restoration [6.9871848733878155]
Source-free domain adaptation (SFDA) aims to adapt a model trained on labelled data in a source domain to unlabelled data in a target domain without access to the source-domain data during adaptation.
We propose Feature Restoration (FR) as it seeks to extract features with the same semantics from the target domain as were previously extracted from the source.
We additionally propose Bottom-Up Feature Restoration (BUFR), a bottom-up training scheme for FR which boosts performance by preserving learnt structure in the later layers of a network.
arXiv Detail & Related papers (2021-07-12T14:21:14Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
We study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation.
We propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA.
arXiv Detail & Related papers (2021-05-28T23:06:26Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.