RetinaQA: A Robust Knowledge Base Question Answering Model for both Answerable and Unanswerable Questions
- URL: http://arxiv.org/abs/2403.10849v3
- Date: Sat, 02 Nov 2024 12:12:25 GMT
- Title: RetinaQA: A Robust Knowledge Base Question Answering Model for both Answerable and Unanswerable Questions
- Authors: Prayushi Faldu, Indrajit Bhattacharya, Mausam,
- Abstract summary: State-of-the-art Knowledge Base Question Answering (KBQA) models assume all questions to be answerable.
We propose RetinaQA, a new model that unifies two key ideas in a single KBQA architecture.
We show that RetinaQA significantly outperforms adaptations of state-of-the-art KBQA models in handling both answerable and unanswerable questions.
- Score: 23.73807255464977
- License:
- Abstract: An essential requirement for a real-world Knowledge Base Question Answering (KBQA) system is the ability to detect the answerability of questions when generating logical forms. However, state-of-the-art KBQA models assume all questions to be answerable. Recent research has found that such models, when superficially adapted to detect answerability, struggle to satisfactorily identify the different categories of unanswerable questions, and simultaneously preserve good performance for answerable questions. Towards addressing this issue, we propose RetinaQA, a new KBQA model that unifies two key ideas in a single KBQA architecture: (a) discrimination over candidate logical forms, rather than generating these, for handling schema-related unanswerability, and (b) sketch-filling-based construction of candidate logical forms for handling data-related unaswerability. Our results show that RetinaQA significantly outperforms adaptations of state-of-the-art KBQA models in handling both answerable and unanswerable questions and demonstrates robustness across all categories of unanswerability. Notably, RetinaQA also sets a new state-of-the-art for answerable KBQA, surpassing existing models.
Related papers
- Robust Few-shot Transfer Learning for Knowledge Base Question Answering with Unanswerable Questions [22.411601767105807]
We present FUn-FuSIC that extends the state-of-the-art (SoTA) few-shot transfer model for answerable-only KBQA to handle unanswerability.
Experiments over newly constructed datasets show that FUn-FuSIC outperforms suitable adaptations of the SoTA model for KBQA with unanswerability.
arXiv Detail & Related papers (2024-06-20T13:43:38Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
The purpose of Knowledge-Based Visual Question Answering (KB-VQA) is to provide a correct answer to the question with the aid of external knowledge bases.
We propose a new retriever-ranker paradigm of KB-VQA, Graph pATH rankER (GATHER for brevity)
Specifically, it contains graph constructing, pruning, and path-level ranking, which not only retrieves accurate answers but also provides inference paths that explain the reasoning process.
arXiv Detail & Related papers (2023-10-12T09:12:50Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - Do I have the Knowledge to Answer? Investigating Answerability of
Knowledge Base Questions [25.13991044303459]
We create GrailQAbility, a new benchmark KBQA dataset with unanswerability.
Experimenting with three state-of-the-art KBQA models, we find that all three models suffer a drop in performance.
This underscores the need for further research in making KBQA systems robust to unanswerability.
arXiv Detail & Related papers (2022-12-20T12:00:26Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Summary-Oriented Question Generation for Informational Queries [23.72999724312676]
We aim to produce self-explanatory questions that focus on main document topics and are answerable with variable length passages as appropriate.
Our model shows SOTA performance of SQ generation on the NQ dataset (20.1 BLEU-4).
We further apply our model on out-of-domain news articles, evaluating with a QA system due to the lack of gold questions and demonstrate that our model produces better SQs for news articles -- with further confirmation via a human evaluation.
arXiv Detail & Related papers (2020-10-19T17:30:08Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions.
Researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference.
arXiv Detail & Related papers (2020-07-26T07:13:32Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
We propose an unsupervised approach to training QA models with generated pseudo-training data.
We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance.
arXiv Detail & Related papers (2020-04-24T17:57:45Z) - SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions [66.86887670416193]
We show that state-of-the-art VQA models have comparable performance in answering perception and reasoning questions, but suffer from consistency problems.
To address this shortcoming, we propose an approach called Sub-Question-aware Network Tuning (SQuINT)
We show that SQuINT improves model consistency by 5%, also marginally improving performance on the Reasoning questions in VQA, while also displaying better attention maps.
arXiv Detail & Related papers (2020-01-20T01:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.