Regularizing CNNs using Confusion Penalty Based Label Smoothing for Histopathology Images
- URL: http://arxiv.org/abs/2403.10881v1
- Date: Sat, 16 Mar 2024 10:25:49 GMT
- Title: Regularizing CNNs using Confusion Penalty Based Label Smoothing for Histopathology Images
- Authors: Somenath Kuiry, Alaka Das, Mita Nasipuri, Nibaran Das,
- Abstract summary: Modern CNNs can be overconfident, making them difficult to deploy in real-world scenarios.
This paper introduces a novel LS technique based on the confusion penalty, which treats model confusion for each class with more importance than others.
We have performed extensive experiments with well-known CNN architectures with this technique on publicly available Colorectal Histology datasets.
- Score: 7.659984194016969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning, particularly Convolutional Neural Networks (CNN), has been successful in computer vision tasks and medical image analysis. However, modern CNNs can be overconfident, making them difficult to deploy in real-world scenarios. Researchers propose regularizing techniques, such as Label Smoothing (LS), which introduces soft labels for training data, making the classifier more regularized. LS captures disagreements or lack of confidence in the training phase, making the classifier more regularized. Although LS is quite simple and effective, traditional LS techniques utilize a weighted average between target distribution and a uniform distribution across the classes, which limits the objective of LS as well as the performance. This paper introduces a novel LS technique based on the confusion penalty, which treats model confusion for each class with more importance than others. We have performed extensive experiments with well-known CNN architectures with this technique on publicly available Colorectal Histology datasets and got satisfactory results. Also, we have compared our findings with the State-of-the-art and shown our method's efficacy with Reliability diagrams and t-distributed Stochastic Neighbor Embedding (t-SNE) plots of feature space.
Related papers
- CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Dilated Convolution with Learnable Spacings [1.8130068086063336]
This thesis presents and evaluates the Dilated Convolution with Learnable Spacings (DCLS) method.
Through various supervised learning experiments in the fields of computer vision, audio, and speech processing, the DCLS method proves to outperform both standard and advanced convolution techniques.
arXiv Detail & Related papers (2024-08-10T12:12:39Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
This paper explores the im-pact of Long Short-Term Memory layers on the effectiveness of Convolutional Neural Networks (CNNs) within deep learning models.
By integrating LSTM layers, the model can capture temporal dependencies in the fNIRS data, al-lowing for a more comprehensive understanding of cognitive states.
arXiv Detail & Related papers (2024-07-22T11:28:34Z) - Unknown Health States Recognition With Collective Decision Based Deep
Learning Networks In Predictive Maintenance Applications [1.0515439489916734]
This paper proposes a collective decision framework for different CNNs.
It is based on a One-vs-Rest network (OVRN) to simultaneously achieve classification of known and unknown health states.
OVRN learn state-specific discriminative features and enhance the ability to reject new abnormal samples incorporated to different CNNs.
arXiv Detail & Related papers (2023-10-25T08:24:48Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Compare Where It Matters: Using Layer-Wise Regularization To Improve
Federated Learning on Heterogeneous Data [0.0]
Federated Learning is a widely adopted method to train neural networks over distributed data.
One main limitation is the performance degradation that occurs when data is heterogeneously distributed.
We present FedCKA: a framework that out-performs previous state-of-the-art methods on various deep learning tasks.
arXiv Detail & Related papers (2021-12-01T10:46:13Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
We trained ESNs and LSTMs on a Cross-Situationnal Learning (CSL) task.
The results are of three kinds: performance comparison, internal dynamics analyses and visualization of latent space.
arXiv Detail & Related papers (2020-12-03T08:32:01Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - FocusLiteNN: High Efficiency Focus Quality Assessment for Digital
Pathology [42.531674974834544]
We propose a CNN-based model that maintains fast computations similar to the knowledge-driven methods without excessive hardware requirements.
We create a training dataset using FocusPath which encompasses diverse tissue slides across nine different stain colors.
In our attempt to reduce the CNN complexity, we find with surprise that even trimming down the CNN to the minimal level, it still achieves a highly competitive performance.
arXiv Detail & Related papers (2020-07-11T20:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.