Forward Learning of Graph Neural Networks
- URL: http://arxiv.org/abs/2403.11004v2
- Date: Sat, 13 Apr 2024 00:10:00 GMT
- Title: Forward Learning of Graph Neural Networks
- Authors: Namyong Park, Xing Wang, Antoine Simoulin, Shuai Yang, Grey Yang, Ryan Rossi, Puja Trivedi, Nesreen Ahmed,
- Abstract summary: Backpropagation (BP) is the de facto standard for training deep neural networks (NNs)
BP imposes several constraints, which are not only biologically implausible, but also limit the scalability, parallelism, and flexibility in learning NNs.
We propose ForwardGNN, which avoids the constraints imposed by BP via an effective layer-wise local forward training.
- Score: 17.79590285482424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have achieved remarkable success across a wide range of applications, such as recommendation, drug discovery, and question answering. Behind the success of GNNs lies the backpropagation (BP) algorithm, which is the de facto standard for training deep neural networks (NNs). However, despite its effectiveness, BP imposes several constraints, which are not only biologically implausible, but also limit the scalability, parallelism, and flexibility in learning NNs. Examples of such constraints include storage of neural activities computed in the forward pass for use in the subsequent backward pass, and the dependence of parameter updates on non-local signals. To address these limitations, the forward-forward algorithm (FF) was recently proposed as an alternative to BP in the image classification domain, which trains NNs by performing two forward passes over positive and negative data. Inspired by this advance, we propose ForwardGNN in this work, a new forward learning procedure for GNNs, which avoids the constraints imposed by BP via an effective layer-wise local forward training. ForwardGNN extends the original FF to deal with graph data and GNNs, and makes it possible to operate without generating negative inputs (hence no longer forward-forward). Further, ForwardGNN enables each layer to learn from both the bottom-up and top-down signals without relying on the backpropagation of errors. Extensive experiments on real-world datasets show the effectiveness and generality of the proposed forward graph learning framework. We release our code at https://github.com/facebookresearch/forwardgnn.
Related papers
- Reducing Oversmoothing through Informed Weight Initialization in Graph Neural Networks [16.745718346575202]
We propose a new scheme (G-Init) that reduces oversmoothing, leading to very good results in node and graph classification tasks.
Our results indicate that the new method (G-Init) reduces oversmoothing in deep GNNs, facilitating their effective use.
arXiv Detail & Related papers (2024-10-31T11:21:20Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Neural Network Verification with Branch-and-Bound for General Nonlinearities [63.39918329535165]
Branch-and-bound (BaB) is among the most effective techniques for neural network (NN) verification.
We develop a general framework, named GenBaB, to conduct BaB on general nonlinearities to verify NNs with general architectures.
We demonstrate the effectiveness of our GenBaB on verifying a wide range of NNs, including NNs with activation functions such as Sigmoid, Tanh, Sine and GeLU.
arXiv Detail & Related papers (2024-05-31T17:51:07Z) - On the Initialization of Graph Neural Networks [10.153841274798829]
We analyze the variance of forward and backward propagation across Graph Neural Networks layers.
We propose a new method for Variance Instability Reduction within GNN Optimization (Virgo)
We conduct comprehensive experiments on 15 datasets to show that Virgo can lead to superior model performance.
arXiv Detail & Related papers (2023-12-05T09:55:49Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Credit Assignment Through Broadcasting a Global Error Vector [4.683806391173103]
Backpropagation (BP) uses detailed, unit-specific feedback to train deep neural networks (DNNs) with remarkable success.
Here, we explore the extent to which a globally broadcast learning signal, coupled with local weight updates, enables training of DNNs.
arXiv Detail & Related papers (2021-06-08T04:08:46Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.