Beyond Static Evaluation: A Dynamic Approach to Assessing AI Assistants' API Invocation Capabilities
- URL: http://arxiv.org/abs/2403.11128v2
- Date: Wed, 27 Mar 2024 15:22:53 GMT
- Title: Beyond Static Evaluation: A Dynamic Approach to Assessing AI Assistants' API Invocation Capabilities
- Authors: Honglin Mu, Yang Xu, Yunlong Feng, Xiaofeng Han, Yitong Li, Yutai Hou, Wanxiang Che,
- Abstract summary: We propose Automated Dynamic Evaluation (AutoDE) to assess an assistant's API call capability without human involvement.
In our framework, we endeavor to closely mirror genuine human conversation patterns in human-machine interactions.
- Score: 48.922660354417204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of Large Language Models (LLMs), AI assistants' ability to utilize tools, especially through API calls, has advanced notably. This progress has necessitated more accurate evaluation methods. Many existing studies adopt static evaluation, where they assess AI assistants' API call based on pre-defined dialogue histories. However, such evaluation method can be misleading, as an AI assistant might fail in generating API calls from preceding human interaction in real cases. Instead of the resource-intensive method of direct human-machine interactions, we propose Automated Dynamic Evaluation (AutoDE) to assess an assistant's API call capability without human involvement. In our framework, we endeavor to closely mirror genuine human conversation patterns in human-machine interactions, using a LLM-based user agent, equipped with a user script to ensure human alignment. Experimental results highlight that AutoDE uncovers errors overlooked by static evaluations, aligning more closely with human assessment. Testing four AI assistants using our crafted benchmark, our method further mirrored human evaluation compared to conventional static evaluations.
Related papers
- Simulating User Agents for Embodied Conversational-AI [9.402740034754455]
We build a large language model (LLM)-based user agent that can simulate user behavior during interactions with an embodied agent.
We evaluate our user agent's ability to generate human-like behaviors by comparing its simulated dialogues with the TEACh dataset.
arXiv Detail & Related papers (2024-10-31T00:56:08Z) - IQA-EVAL: Automatic Evaluation of Human-Model Interactive Question Answering [10.338962367542331]
We introduce an automatic evaluation framework IQA-EVAL to achieve Interactive Question Answering Evaluations.
We also introduce a LLM-based Evaluation Agent (LEA) that can simulate human behaviors to generate interactions with IQA models.
We show that our evaluation framework with GPT-4 as the backbone model achieves a high correlation with human evaluations on the IQA task.
arXiv Detail & Related papers (2024-08-24T10:34:20Z) - The Challenges of Evaluating LLM Applications: An Analysis of Automated, Human, and LLM-Based Approaches [0.0]
We discuss the issue with the increasingly popular LLM based evaluations and how they correlate with human evaluations.
We introduce a comprehensive factored evaluation mechanism that can be utilized in conjunction with both human and LLM-based evaluations.
Results show that factor based evaluation produces better insights on which aspects need to be improved in LLM applications.
arXiv Detail & Related papers (2024-06-05T14:55:10Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - Learning and Evaluating Human Preferences for Conversational Head
Generation [101.89332968344102]
We propose a novel learning-based evaluation metric named Preference Score (PS) for fitting human preference according to the quantitative evaluations across different dimensions.
PS can serve as a quantitative evaluation without the need for human annotation.
arXiv Detail & Related papers (2023-07-20T07:04:16Z) - Approximating Online Human Evaluation of Social Chatbots with Prompting [11.657633779338724]
Existing evaluation metrics aim to automate offline user evaluation and approximate human judgment of pre-curated dialogs.
We propose an approach to approximate online human evaluation leveraging large language models (LLMs) from the GPT family.
We introduce a new Dialog system Evaluation framework based on Prompting (DEP), which enables a fully automatic evaluation pipeline.
arXiv Detail & Related papers (2023-04-11T14:45:01Z) - Evaluating Human-Language Model Interaction [79.33022878034627]
We develop a new framework, Human-AI Language-based Interaction Evaluation (HALIE), that defines the components of interactive systems.
We design five tasks to cover different forms of interaction: social dialogue, question answering, crossword puzzles, summarization, and metaphor generation.
We find that better non-interactive performance does not always translate to better human-LM interaction.
arXiv Detail & Related papers (2022-12-19T18:59:45Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.