DuPL: Dual Student with Trustworthy Progressive Learning for Robust Weakly Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2403.11184v1
- Date: Sun, 17 Mar 2024 12:14:34 GMT
- Title: DuPL: Dual Student with Trustworthy Progressive Learning for Robust Weakly Supervised Semantic Segmentation
- Authors: Yuanchen Wu, Xichen Ye, Kequan Yang, Jide Li, Xiaoqiang Li,
- Abstract summary: We propose a dual student framework with trustworthy progressive learning (DuPL)
Experiment results demonstrate the superiority of the proposed DuPL over the recent state-of-the-art alternatives on PASCAL VOC 2012 and MS datasets.
- Score: 6.775785126617824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, One-stage Weakly Supervised Semantic Segmentation (WSSS) with image-level labels has gained increasing interest due to simplification over its cumbersome multi-stage counterpart. Limited by the inherent ambiguity of Class Activation Map (CAM), we observe that one-stage pipelines often encounter confirmation bias caused by incorrect CAM pseudo-labels, impairing their final segmentation performance. Although recent works discard many unreliable pseudo-labels to implicitly alleviate this issue, they fail to exploit sufficient supervision for their models. To this end, we propose a dual student framework with trustworthy progressive learning (DuPL). Specifically, we propose a dual student network with a discrepancy loss to yield diverse CAMs for each sub-net. The two sub-nets generate supervision for each other, mitigating the confirmation bias caused by learning their own incorrect pseudo-labels. In this process, we progressively introduce more trustworthy pseudo-labels to be involved in the supervision through dynamic threshold adjustment with an adaptive noise filtering strategy. Moreover, we believe that every pixel, even discarded from supervision due to its unreliability, is important for WSSS. Thus, we develop consistency regularization on these discarded regions, providing supervision of every pixel. Experiment results demonstrate the superiority of the proposed DuPL over the recent state-of-the-art alternatives on PASCAL VOC 2012 and MS COCO datasets. Code is available at https://github.com/Wu0409/DuPL.
Related papers
- CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection [58.07124777351955]
We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning(DRCL)
DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.
Our code will be available soon.
arXiv Detail & Related papers (2024-08-15T09:33:43Z) - Weakly Supervised Co-training with Swapping Assignments for Semantic Segmentation [21.345548821276097]
Class activation maps (CAMs) are commonly employed in weakly supervised semantic segmentation (WSSS) to produce pseudo-labels.
We propose an end-to-end WSSS model incorporating guided CAMs, wherein our segmentation model is trained while concurrently optimizing CAMs online.
CoSA is the first single-stage approach to outperform all existing multi-stage methods including those with additional supervision.
arXiv Detail & Related papers (2024-02-27T21:08:23Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic
Segmentation [27.831267434546024]
We revisit the weak-to-strong consistency framework popularized by FixMatch from semi-supervised classification.
We propose an auxiliary feature perturbation stream as a supplement, leading to an expanded perturbation space.
Our overall Unified Dual-Stream Perturbations approach (UniMatch) surpasses all existing methods significantly across all evaluation protocols.
arXiv Detail & Related papers (2022-08-21T15:32:43Z) - Label Matching Semi-Supervised Object Detection [85.99282969977541]
Semi-supervised object detection has made significant progress with the development of mean teacher driven self-training.
Label mismatch problem is not yet fully explored in the previous works, leading to severe confirmation bias during self-training.
We propose a simple yet effective LabelMatch framework from two different yet complementary perspectives.
arXiv Detail & Related papers (2022-06-14T05:59:41Z) - Threshold Matters in WSSS: Manipulating the Activation for the Robust
and Accurate Segmentation Model Against Thresholds [16.6833745997519]
Weakly-supervised semantic segmentation (WSSS) has recently gained much attention for its promise to train segmentation models only with image-level labels.
Existing WSSS methods commonly argue that the sparse coverage of CAM incurs the performance bottleneck of WSSS.
This paper provides analytical and empirical evidence that the actual bottleneck may not be sparse coverage but a global thresholding scheme applied after CAM.
arXiv Detail & Related papers (2022-03-30T04:26:14Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
We propose a differentiable geometric warping to conduct unsupervised data augmentation.
We also propose a novel adversarial dual-student framework to improve the Mean-Teacher.
Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets.
arXiv Detail & Related papers (2022-03-05T17:36:17Z) - Two-phase Pseudo Label Densification for Self-training based Domain
Adaptation [93.03265290594278]
We propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD.
In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images.
In the second phase, we perform a confidence-based easy-hard classification.
To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss.
arXiv Detail & Related papers (2020-12-09T02:35:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.