Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias
- URL: http://arxiv.org/abs/2403.11234v1
- Date: Sun, 17 Mar 2024 14:43:47 GMT
- Title: Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias
- Authors: Wenyu Zhang, Qingmu Liu, Felix Ong Wei Cong, Mohamed Ragab, Chuan-Sheng Foo,
- Abstract summary: We introduce Universal Semi-Supervised Domain Adaptation (UniSSDA)
UniSSDA is at the intersection of Universal Domain Adaptation (UniDA) and Semi-Supervised Domain Adaptation (SSDA)
We propose a new prior-guided pseudo-label refinement strategy to reduce the reinforcement of common-class bias due to pseudo-labeling.
- Score: 16.4249819402209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation is a critical task in machine learning that aims to improve model performance on a target domain by leveraging knowledge from a related source domain. In this work, we introduce Universal Semi-Supervised Domain Adaptation (UniSSDA), a practical yet challenging setting where the target domain is partially labeled, and the source and target label space may not strictly match. UniSSDA is at the intersection of Universal Domain Adaptation (UniDA) and Semi-Supervised Domain Adaptation (SSDA): the UniDA setting does not allow for fine-grained categorization of target private classes not represented in the source domain, while SSDA focuses on the restricted closed-set setting where source and target label spaces match exactly. Existing UniDA and SSDA methods are susceptible to common-class bias in UniSSDA settings, where models overfit to data distributions of classes common to both domains at the expense of private classes. We propose a new prior-guided pseudo-label refinement strategy to reduce the reinforcement of common-class bias due to pseudo-labeling, a common label propagation strategy in domain adaptation. We demonstrate the effectiveness of the proposed strategy on benchmark datasets Office-Home, DomainNet, and VisDA. The proposed strategy attains the best performance across UniSSDA adaptation settings and establishes a new baseline for UniSSDA.
Related papers
- Reducing Source-Private Bias in Extreme Universal Domain Adaptation [11.875619863954238]
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
We show that state-of-the-art methods struggle when the source domain has significantly more non-overlapping classes than overlapping ones.
We propose using self-supervised learning to preserve the structure of the target data.
arXiv Detail & Related papers (2024-10-15T04:51:37Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
Semi-supervised domain adaptation (SSDA) aims to bridge source and target domain distributions, with a small number of target labels available.
Existing SSDA work fails to make full use of label information from both source and target domains for feature alignment across domains.
This paper presents a novel SSDA approach, Inter-domain Mixup with Neighborhood Expansion (IDMNE), to tackle this issue.
arXiv Detail & Related papers (2024-01-21T10:20:46Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Upcycling Models under Domain and Category Shift [95.22147885947732]
We introduce an innovative global and local clustering learning technique (GLC)
We design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes.
Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8% on the VisDA benchmark.
arXiv Detail & Related papers (2023-03-13T13:44:04Z) - Unified Optimal Transport Framework for Universal Domain Adaptation [27.860165056943796]
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a source domain to a target domain without any constraints on label sets.
Most existing methods require manually specified or hand-tuned threshold values to detect common samples.
We propose to use Optimal Transport (OT) to handle these issues under a unified framework, namely UniOT.
arXiv Detail & Related papers (2022-10-31T05:07:09Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [1.2691047660244335]
Unsupervised Domain Adaptation (UDA) aims to align the labeled source distribution with the unlabeled target distribution to obtain domain invariant predictive models.
We propose Contrastive Learning framework for semi-supervised Domain Adaptation (CLDA) that attempts to bridge the intra-domain gap.
CLDA achieves state-of-the-art results on all the above datasets.
arXiv Detail & Related papers (2021-06-30T20:23:19Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Learning Target Domain Specific Classifier for Partial Domain Adaptation [85.71584004185031]
Unsupervised domain adaptation (UDA) aims at reducing the distribution discrepancy when transferring knowledge from a labeled source domain to an unlabeled target domain.
This paper focuses on a more realistic UDA scenario, where the target label space is subsumed to the source label space.
arXiv Detail & Related papers (2020-08-25T02:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.