Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors
- URL: http://arxiv.org/abs/2403.11407v1
- Date: Mon, 18 Mar 2024 01:47:24 GMT
- Title: Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors
- Authors: Yazid Janati, Alain Durmus, Eric Moulines, Jimmy Olsson,
- Abstract summary: In this work, we take a different approach to define a set of intermediate and simpler posterior sampling problems, resulting in a lower approximation error compared to previous methods.
We empirically demonstrate the reconstruction capability of our method for general linear inverse problems using synthetic examples and various image restoration tasks.
- Score: 21.51814794909746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interest in the use of Denoising Diffusion Models (DDM) as priors for solving inverse Bayesian problems has recently increased significantly. However, sampling from the resulting posterior distribution poses a challenge. To solve this problem, previous works have proposed approximations to bias the drift term of the diffusion. In this work, we take a different approach and utilize the specific structure of the DDM prior to define a set of intermediate and simpler posterior sampling problems, resulting in a lower approximation error compared to previous methods. We empirically demonstrate the reconstruction capability of our method for general linear inverse problems using synthetic examples and various image restoration tasks.
Related papers
- Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Principled Probabilistic Imaging using Diffusion Models as Plug-and-Play Priors [29.203951468436145]
Diffusion models (DMs) have recently shown outstanding capabilities in modeling complex image distributions.
We propose a Markov chain Monte Carlo algorithm that performs posterior sampling for general inverse problems.
We demonstrate the effectiveness of the proposed method on six inverse problems.
arXiv Detail & Related papers (2024-05-29T05:42:25Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Solving Inverse Problems with a Flow-based Noise Model [100.18560761392692]
We study image inverse problems with a normalizing flow prior.
Our formulation views the solution as the maximum a posteriori estimate of the image conditioned on the measurements.
We empirically validate the efficacy of our method on various inverse problems, including compressed sensing with quantized measurements and denoising with highly structured noise patterns.
arXiv Detail & Related papers (2020-03-18T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.