CasSR: Activating Image Power for Real-World Image Super-Resolution
- URL: http://arxiv.org/abs/2403.11451v1
- Date: Mon, 18 Mar 2024 03:59:43 GMT
- Title: CasSR: Activating Image Power for Real-World Image Super-Resolution
- Authors: Haolan Chen, Jinhua Hao, Kai Zhao, Kun Yuan, Ming Sun, Chao Zhou, Wei Hu,
- Abstract summary: Cascaded diffusion for Super-Resolution, CasSR, is a novel method designed to produce highly detailed and realistic images.
We develop a cascaded controllable diffusion model that aims to optimize the extraction of information from low-resolution images.
- Score: 24.152495730507823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of image super-resolution is to generate clean and high-resolution images from degraded versions. Recent advancements in diffusion modeling have led to the emergence of various image super-resolution techniques that leverage pretrained text-to-image (T2I) models. Nevertheless, due to the prevalent severe degradation in low-resolution images and the inherent characteristics of diffusion models, achieving high-fidelity image restoration remains challenging. Existing methods often exhibit issues including semantic loss, artifacts, and the introduction of spurious content not present in the original image. To tackle this challenge, we propose Cascaded diffusion for Super-Resolution, CasSR , a novel method designed to produce highly detailed and realistic images. In particular, we develop a cascaded controllable diffusion model that aims to optimize the extraction of information from low-resolution images. This model generates a preliminary reference image to facilitate initial information extraction and degradation mitigation. Furthermore, we propose a multi-attention mechanism to enhance the T2I model's capability in maximizing the restoration of the original image content. Through a comprehensive blend of qualitative and quantitative analyses, we substantiate the efficacy and superiority of our approach.
Related papers
- One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called One-Step Image Rescaling Diffusion (OSIRDiff) for extreme image rescaling.
OSIRDiff performs rescaling operations in the latent space of a pre-trained autoencoder.
It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance [11.44012694656102]
Large-scale generative models, such as text-to-image diffusion models, have garnered widespread attention across diverse domains.
Existing large-scale diffusion models are confined to generating images of up to 1K resolution.
We propose a novel progressive approach that fully utilizes generated low-resolution images to guide the generation of higher-resolution images.
arXiv Detail & Related papers (2024-06-26T16:10:31Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.