Reinforcement Learning with Token-level Feedback for Controllable Text Generation
- URL: http://arxiv.org/abs/2403.11558v1
- Date: Mon, 18 Mar 2024 08:18:37 GMT
- Title: Reinforcement Learning with Token-level Feedback for Controllable Text Generation
- Authors: Wendi Li, Wei Wei, Kaihe Xu, Wenfeng Xie, Dangyang Chen, Yu Cheng,
- Abstract summary: We propose a novel reinforcement learning algorithm named TOLE which formulates TOken-LEvel rewards for controllable text generation.
Experimental results show that our algorithm can achieve superior performance on both single-attribute and multi-attribute control tasks.
- Score: 16.117006822479407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To meet the requirements of real-world applications, it is essential to control generations of large language models (LLMs). Prior research has tried to introduce reinforcement learning (RL) into controllable text generation while most existing methods suffer from overfitting issues (finetuning-based methods) or semantic collapse (post-processing methods). However, current RL methods are generally guided by coarse-grained (sentence/paragraph-level) feedback, which may lead to suboptimal performance owing to semantic twists or progressions within sentences. To tackle that, we propose a novel reinforcement learning algorithm named TOLE which formulates TOken-LEvel rewards for controllable text generation, and employs a "first-quantize-then-noise" paradigm to enhance the robustness of the RL algorithm.Furthermore, TOLE can be flexibly extended to multiple constraints with little computational expense. Experimental results show that our algorithm can achieve superior performance on both single-attribute and multi-attribute control tasks. We have released our codes at https://github.com/WindyLee0822/CTG
Related papers
- Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
Value-based reinforcement learning can learn effective policies for a wide range of multi-turn problems.
Current value-based RL methods have proven particularly challenging to scale to the setting of large language models.
We propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning problem.
arXiv Detail & Related papers (2024-11-07T21:36:52Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - KRLS: Improving End-to-End Response Generation in Task Oriented Dialog
with Reinforced Keywords Learning [25.421649004269373]
In task-oriented dialogs (TOD), reinforcement learning algorithms train a model to directly optimize response for task-related metrics.
We investigate an approach to create a more efficient RL-based algorithm to improve TOD performance in an offline setting.
Experiments on the MultiWoZ dataset show our new training algorithm, Keywords Reinforcement Learning with Next-word Sampling (KRLS), achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-11-30T06:27:46Z) - FAST: Improving Controllability for Text Generation with Feedback Aware
Self-Training [25.75982440355576]
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length.
Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms.
We propose two simple techniques to reduce these correlations in training sets.
arXiv Detail & Related papers (2022-10-06T19:00:51Z) - Is Reinforcement Learning (Not) for Natural Language Processing?:
Benchmarks, Baselines, and Building Blocks for Natural Language Policy
Optimization [73.74371798168642]
We introduce an open-source modular library, RL4LMs, for optimizing language generators with reinforcement learning.
Next, we present the GRUE benchmark, a set of 6 language generation tasks which are supervised not by target strings, but by reward functions.
Finally, we introduce an easy-to-use, performant RL algorithm, NLPO, that learns to effectively reduce the action space in language generation.
arXiv Detail & Related papers (2022-10-03T21:38:29Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Unsupervised Text Generation by Learning from Search [86.51619839836331]
TGLS is a novel framework to unsupervised Text Generation by Learning.
We demonstrate the effectiveness of TGLS on two real-world natural language generation tasks, paraphrase generation and text formalization.
arXiv Detail & Related papers (2020-07-09T04:34:48Z) - Reinforcement Learning with Augmented Data [97.42819506719191]
We present Reinforcement Learning with Augmented Data (RAD), a simple plug-and-play module that can enhance most RL algorithms.
We show that augmentations such as random translate, crop, color jitter, patch cutout, random convolutions, and amplitude scale can enable simple RL algorithms to outperform complex state-of-the-art methods.
arXiv Detail & Related papers (2020-04-30T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.