How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments
- URL: http://arxiv.org/abs/2403.11807v2
- Date: Thu, 25 Apr 2024 15:04:41 GMT
- Title: How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments
- Authors: Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Michael R. Lyu,
- Abstract summary: This research investigates Large Language Models' decision-making capabilities through the lens of Game Theory.
We focus specifically on games that support the participation of more than two agents simultaneously.
We introduce our framework, GAMA-Bench, including eight classical multi-agent games.
- Score: 83.78240828340681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision-making, a complicated task requiring various types of abilities, presents an excellent framework for assessing Large Language Models (LLMs). Our research investigates LLMs' decision-making capabilities through the lens of a well-established field, Game Theory. We focus specifically on games that support the participation of more than two agents simultaneously. Subsequently, we introduce our framework, GAMA-Bench, including eight classical multi-agent games. We design a scoring scheme to assess a model's performance in these games quantitatively. Through GAMA-Bench, we investigate LLMs' robustness, generalizability, and enhancement strategies. Results reveal that while GPT-3.5 shows satisfying robustness, its generalizability is relatively limited. However, its performance can be improved through approaches such as Chain-of-Thought. Additionally, we conduct evaluations across various LLMs and find that GPT-4 outperforms other models on GAMA-Bench, achieving a score of 60.5. Moreover, Gemini-1.0-Pro and GPT-3.5 (0613, 1106, 0125) demonstrate similar intelligence on GAMA-Bench. The code and experimental results are made publicly available via https://github.com/CUHK-ARISE/GAMABench.
Related papers
- Leveraging LLMs as Meta-Judges: A Multi-Agent Framework for Evaluating LLM Judgments [6.270885758858811]
Large language models (LLMs) are being widely applied across various fields, but as tasks become more complex, evaluating their responses is increasingly challenging.
We propose a three-stage meta-judge selection pipeline: 1) developing a comprehensive rubric with GPT-4 and human experts, 2) using three advanced LLM agents to score judgments, and 3) applying a threshold to filter out low-scoring judgments.
Experimental results on the JudgeBench dataset show about 15.55% improvement compared to raw judgments and about 8.37% improvement over the single-agent baseline.
arXiv Detail & Related papers (2025-04-23T20:32:12Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.
We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.
LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoT is a gaming arena designed for rigorous assessment of Large Language Models.
We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics.
Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.
arXiv Detail & Related papers (2024-12-18T08:32:53Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - LLM-TOPLA: Efficient LLM Ensemble by Maximising Diversity [7.945893812374361]
We introduce the focal diversity metric to capture the diversity-performance correlation among component LLMs of an ensemble.
We develop a diversity-optimized ensemble pruning algorithm to select the top-k sub-ensembles from a pool of $N$ base LLMs.
Our pruning method recommends top-performing LLM subensembles of size $S$, often much smaller than $N$.
arXiv Detail & Related papers (2024-10-04T22:31:15Z) - MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs [21.689490112983677]
We introduce MetaLLM, a framework that dynamically routes each query to the optimal large language models (LLMs) for classification tasks.
By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty.
Our experiments, conducted on popular LLM platforms, showcase MetaLLM's efficacy in real-world scenarios.
arXiv Detail & Related papers (2024-07-15T15:45:07Z) - Evaluating Large Language Models with Grid-Based Game Competitions: An Extensible LLM Benchmark and Leaderboard [0.0]
We introduce a novel benchmark for large language models (LLMs) through grid-based games such as Tic-Tac-Toe, Connect Four, and Gomoku.
The open-source game simulation code available on GitHub allows LLMs to compete and generates detailed data files.
We present the results of games among leading LLMs, including Claude 3.5 Sonnet and Claude 3 Sonnet by Anthropic, Gemini 1.5 Pro and Gemini Flash by Google, GPT-4 Turbo and GPT-4o by OpenAI, and Llama3-70B by Meta.
arXiv Detail & Related papers (2024-07-10T16:14:34Z) - Can Large Language Models Play Games? A Case Study of A Self-Play
Approach [61.15761840203145]
Large Language Models (LLMs) harness extensive data from the Internet, storing a broad spectrum of prior knowledge.
Monte-Carlo Tree Search (MCTS) is a search algorithm that provides reliable decision-making solutions.
This work introduces an innovative approach that bolsters LLMs with MCTS self-play to efficiently resolve turn-based zero-sum games.
arXiv Detail & Related papers (2024-03-08T19:16:29Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.