ReGenNet: Towards Human Action-Reaction Synthesis
- URL: http://arxiv.org/abs/2403.11882v1
- Date: Mon, 18 Mar 2024 15:33:06 GMT
- Title: ReGenNet: Towards Human Action-Reaction Synthesis
- Authors: Liang Xu, Yizhou Zhou, Yichao Yan, Xin Jin, Wenhan Zhu, Fengyun Rao, Xiaokang Yang, Wenjun Zeng,
- Abstract summary: We analyze the asymmetric, dynamic, synchronous, and detailed nature of human-human interactions.
We propose the first multi-setting human action-reaction benchmark to generate human reactions conditioned on given human actions.
- Score: 87.57721371471536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans constantly interact with their surrounding environments. Current human-centric generative models mainly focus on synthesizing humans plausibly interacting with static scenes and objects, while the dynamic human action-reaction synthesis for ubiquitous causal human-human interactions is less explored. Human-human interactions can be regarded as asymmetric with actors and reactors in atomic interaction periods. In this paper, we comprehensively analyze the asymmetric, dynamic, synchronous, and detailed nature of human-human interactions and propose the first multi-setting human action-reaction synthesis benchmark to generate human reactions conditioned on given human actions. To begin with, we propose to annotate the actor-reactor order of the interaction sequences for the NTU120, InterHuman, and Chi3D datasets. Based on them, a diffusion-based generative model with a Transformer decoder architecture called ReGenNet together with an explicit distance-based interaction loss is proposed to predict human reactions in an online manner, where the future states of actors are unavailable to reactors. Quantitative and qualitative results show that our method can generate instant and plausible human reactions compared to the baselines, and can generalize to unseen actor motions and viewpoint changes.
Related papers
- PhysReaction: Physically Plausible Real-Time Humanoid Reaction Synthesis via Forward Dynamics Guided 4D Imitation [19.507619255773125]
We propose a Forward Dynamics Guided 4D Imitation method to generate physically plausible human-like reactions.
The learned policy is capable of generating physically plausible and human-like reactions in real-time, significantly improving the speed(x33) and quality of reactions.
arXiv Detail & Related papers (2024-04-01T12:21:56Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - Interactive Humanoid: Online Full-Body Motion Reaction Synthesis with
Social Affordance Canonicalization and Forecasting [23.37555991996508]
We propose a new task named online full-body motion reaction synthesis.
It generates humanoid reactions based on the human actor's motions.
To support this task, we construct two datasets named HHI and CoChair.
arXiv Detail & Related papers (2023-12-14T14:29:52Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
We present ReMoS, a denoising diffusion based model that synthesizes full body motion of a person in two person interaction scenario.
We demonstrate ReMoS across challenging two person scenarios such as pair dancing, Ninjutsu, kickboxing, and acrobatics.
We also contribute the ReMoCap dataset for two person interactions containing full body and finger motions.
arXiv Detail & Related papers (2023-11-28T18:59:52Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - GAN-based Reactive Motion Synthesis with Class-aware Discriminators for
Human-human Interaction [14.023527193608144]
We propose a semi-supervised GAN system that synthesizes the reactive motion of a character given the active motion from another character.
The high quality of the synthetic motion demonstrates the effective design of our generator, and the discriminability of the synthesis also demonstrates the strength of our discriminator.
arXiv Detail & Related papers (2021-10-01T13:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.