Quantum reference frames, measurement schemes and the type of local algebras in quantum field theory
- URL: http://arxiv.org/abs/2403.11973v1
- Date: Mon, 18 Mar 2024 17:11:44 GMT
- Title: Quantum reference frames, measurement schemes and the type of local algebras in quantum field theory
- Authors: Christopher J. Fewster, Daan W. Janssen, Leon Deryck Loveridge, Kasia Rejzner, James Waldron,
- Abstract summary: We combine relativistic quantum measurement theory with quantum reference frames (QRFs)
Local measurements of a quantum field on a background with symmetries are performed relative to a QRF.
This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop an operational framework, combining relativistic quantum measurement theory with quantum reference frames (QRFs), in which local measurements of a quantum field on a background with symmetries are performed relative to a QRF. This yields a joint algebra of quantum-field and reference-frame observables that is invariant under the natural action of the group of spacetime isometries. For the appropriate class of quantum reference frames, this algebra is parameterised in terms of crossed products. Provided that the quantum field has good thermal properties (expressed by the existence of a KMS state at some nonzero temperature), one can use modular theory to show that the invariant algebra admits a semifinite trace. If furthermore the quantum reference frame has good thermal behaviour (expressed by the existence of a KMS weight) at the same temperature, this trace is finite. We give precise conditions for the invariant algebra of physical observables to be a type $\textnormal{II}_1$ factor. Our results build upon recent work of Chandrasekaran, Longo, Penington and Witten [JHEP 2023, 82 (2023)], providing both a significant mathematical generalisation of these findings and a refined operational understanding of their model.
Related papers
- Relational Quantum Geometry [0.0]
We identify non-commutative or quantum geometry as a mathematical framework which unifies three objects.
We first provide a rigorous account of the extended phase space, and demonstrate that it can be regarded as a classical principal bundle with a Poisson manifold base.
We conclude that the quantum orbifold is equivalent to the G-framed algebra proposed in prior work.
arXiv Detail & Related papers (2024-10-14T19:29:27Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Infinitesimal reference frames suffice to determine the asymmetry
properties of a quantum system [0.0]
We show that asymmetry can be reduced to just a single entropic condition evaluated at the maximally mixed state.
Contrary to intuition, this shows that we do not need macroscopic, classical reference frames to determine the asymmetry properties of a quantum system.
arXiv Detail & Related papers (2021-07-29T17:07:16Z) - Relating the topology of Dirac Hamiltonians to quantum geometry: When
the quantum metric dictates Chern numbers and winding numbers [0.0]
We establish relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians.
We show that topological indices are bounded by the quantum volume determined by the quantum metric.
This work suggests unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
arXiv Detail & Related papers (2021-06-01T21:10:48Z) - Gauge equivariant neural networks for quantum lattice gauge theories [2.14192068078728]
Gauge symmetries play a key role in physics appearing in areas such as quantum field theories of the fundamental particles and emergent degrees of freedom in quantum materials.
Motivated by the desire to efficiently simulate many-body quantum systems with exact local gauge invariance, gauge equivariant neural-network quantum states are introduced.
arXiv Detail & Related papers (2020-12-09T18:57:02Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Finite Deformations of Quantum Mechanics [0.0]
We investigate modifications of quantum mechanics that replace the unitary group in a finite dimensional Hilbert space with a finite group.
We show that Kornyak's proposal to understand QM as classical dynamics on a Hilbert space of one dimension higher than that describing the universe can probably be a model of the world we observe.
arXiv Detail & Related papers (2020-01-21T17:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.