MineDreamer: Learning to Follow Instructions via Chain-of-Imagination for Simulated-World Control
- URL: http://arxiv.org/abs/2403.12037v2
- Date: Tue, 19 Mar 2024 14:52:28 GMT
- Title: MineDreamer: Learning to Follow Instructions via Chain-of-Imagination for Simulated-World Control
- Authors: Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang, Ruimao Zhang, Lu Sheng, Yu Qiao, Jing Shao,
- Abstract summary: We introduce MineDreamer, an open-ended embodied agent built upon the Minecraft simulator.
We employ a Chain-of-Imagination (CoI) mechanism to envision the step-by-step process of executing instructions.
Experiments demonstrate that MineDreamer follows single and multi-step instructions steadily.
- Score: 53.20509532671891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is a long-lasting goal to design a generalist-embodied agent that can follow diverse instructions in human-like ways. However, existing approaches often fail to steadily follow instructions due to difficulties in understanding abstract and sequential natural language instructions. To this end, we introduce MineDreamer, an open-ended embodied agent built upon the challenging Minecraft simulator with an innovative paradigm that enhances instruction-following ability in low-level control signal generation. Specifically, MineDreamer is developed on top of recent advances in Multimodal Large Language Models (MLLMs) and diffusion models, and we employ a Chain-of-Imagination (CoI) mechanism to envision the step-by-step process of executing instructions and translating imaginations into more precise visual prompts tailored to the current state; subsequently, the agent generates keyboard-and-mouse actions to efficiently achieve these imaginations, steadily following the instructions at each step. Extensive experiments demonstrate that MineDreamer follows single and multi-step instructions steadily, significantly outperforming the best generalist agent baseline and nearly doubling its performance. Moreover, qualitative analysis of the agent's imaginative ability reveals its generalization and comprehension of the open world.
Related papers
- Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
This paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework.
It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models.
Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity.
arXiv Detail & Related papers (2024-10-04T11:18:41Z) - From Symbolic Tasks to Code Generation: Diversification Yields Better Task Performers [1.6958018695660049]
We show that a more diverse instruction set, extending beyond code-related tasks, improves the performance of code generation.
Our observations suggest that a more diverse semantic space for instruction-tuning sets greatly improves the model's ability to follow instructions and perform tasks.
arXiv Detail & Related papers (2024-05-30T07:54:07Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
Embodied vision-language models (VLMs) have achieved substantial progress in multimodal perception and reasoning.
To bridge this gap, we introduce Octopus, an embodied vision-language programmer that uses executable code generation as a medium to connect planning and manipulation.
Octopus is designed to 1) proficiently comprehend an agent's visual and textual task objectives, 2) formulate intricate action sequences, and 3) generate executable code.
arXiv Detail & Related papers (2023-10-12T17:59:58Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved instruction-following capabilities.
Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model.
To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models.
arXiv Detail & Related papers (2023-09-14T15:34:01Z) - Instruction-Following Agents with Multimodal Transformer [95.70039658112873]
We propose a simple yet effective model for robots to solve instruction-following tasks in vision-based environments.
Our method consists of a multimodal transformer that encodes visual observations and language instructions.
We show that this unified transformer model outperforms all state-of-the-art pre-trained or trained-from-scratch methods in both single-task and multi-task settings.
arXiv Detail & Related papers (2022-10-24T17:46:47Z) - Understanding Multimodal Procedural Knowledge by Sequencing Multimodal
Instructional Manuals [48.55362590292391]
We benchmark machine learning models' capability of reasoning over and sequencing unordered multimodal instructions.
We find models not only perform significantly worse than humans but also seem incapable of efficiently utilizing the multimodal information.
We propose sequentiality-aware pretraining techniques that exploit the sequential alignment properties of both texts and images.
arXiv Detail & Related papers (2021-10-16T06:12:15Z) - Ask Your Humans: Using Human Instructions to Improve Generalization in
Reinforcement Learning [32.82030512053361]
We propose the use of step-by-step human demonstrations in the form of natural language instructions and action trajectories.
We find that human demonstrations help solve the most complex tasks.
We also find that incorporating natural language allows the model to generalize to unseen tasks in a zero-shot setting.
arXiv Detail & Related papers (2020-11-01T14:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.