Exact counterdiabatic driving for finite topological lattice models
- URL: http://arxiv.org/abs/2403.12150v1
- Date: Mon, 18 Mar 2024 18:07:33 GMT
- Title: Exact counterdiabatic driving for finite topological lattice models
- Authors: Callum W. Duncan,
- Abstract summary: Counterdiabatic driving is a technique to speed up adiabatic protocols by including additional terms calculated from the instantaneous eigenstates that counter diabatic excitations.
We formulate this approach for all states of lattice models, including bound and in-gap states which appear, e.g., in topological insulators.
The derived analytical counterdiabatic driving Hamiltonian can be utilised to inform control protocols in many-body lattice models or to probe the non-equilibrium properties of lattice models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adiabatic protocols are often employed in state preparation schemes but require the system to be driven by a slowly varying Hamiltonian so that transitions between instantaneous eigenstates are exponentially suppressed. Counterdiabatic driving is a technique to speed up adiabatic protocols by including additional terms calculated from the instantaneous eigenstates that counter diabatic excitations. However, this approach requires knowledge of the full eigenspectrum meaning that the exact analytical form of counterdiabatic driving is only known for a subset of problems, e.g., the harmonic oscillator and transverse field Ising model. We extend this subset of problems to include the general family of one-dimensional non-interacting lattice models with open boundary conditions and arbitrary on-site potential, tunnelling terms, and lattice size. We formulate this approach for all states of lattice models, including bound and in-gap states which appear, e.g., in topological insulators. We also derive targeted counterdiabatic driving terms which are tailored to enforce the dynamical state to remain in a specific state. As an example, we consider state transfer using the topological edge states of the Su-Schrieffer-Heeger model. The derived analytical counterdiabatic driving Hamiltonian can be utilised to inform control protocols in many-body lattice models or to probe the non-equilibrium properties of lattice models.
Related papers
- Detecting quasi-degenerate ground states in 1D topological models via VQE [0.0]
We study the exact ground states of the Su--Schrieffer--Heeger open chain and of the Kitaev open chain.
These models host symmetry-protected topological phases, characterized by edge modes with vanishing single-particle energy in the thermodynamic limit.
arXiv Detail & Related papers (2024-08-27T16:24:49Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Kinetically Constrained Quantum Dynamics in Superconducting Circuits [0.7734726150561088]
We study the dynamical properties of the bosonic quantum East model at low temperature.
We show that quantum information remains localized within decoherence times tunable with the parameters of the system.
We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits.
arXiv Detail & Related papers (2021-12-15T19:00:02Z) - Chiral metals and entrapped insulators in a one-dimensional topological
non-Hermitian system [4.3012765978447565]
We study many-body'steady states' that arise in the non-Hermitian generalisation of the non-interacting Su-Schrieffer-Heeger model at a finite density of fermions.
arXiv Detail & Related papers (2021-11-03T13:42:18Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unitary preparation of many body Chern insulators: Adiabatic bulk
boundary correspondence [14.4034719868008]
We prepare an out-of-equilibrium many-body Chern insulator (CI) and associated bulk-boundary correspondence unitarily.
We show that a non-linear ramp may work more efficiently in approaching the topological state.
We also compute the edge current in the time evolved state of the system under a semi-periodic boundary condition.
arXiv Detail & Related papers (2020-05-04T13:14:26Z) - Emergent conservation laws and nonthermal states in the mixed-field
Ising model [0.0]
This paper presents a method of computing approximate conservation laws and eigenstates of integrability-broken models using the concept of adiabatic continuation.
arXiv Detail & Related papers (2020-02-20T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.