OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety
- URL: http://arxiv.org/abs/2403.12316v1
- Date: Mon, 18 Mar 2024 23:21:37 GMT
- Title: OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety
- Authors: Chuang Liu, Linhao Yu, Jiaxuan Li, Renren Jin, Yufei Huang, Ling Shi, Junhui Zhang, Xinmeng Ji, Tingting Cui, Tao Liu, Jinwang Song, Hongying Zan, Sun Li, Deyi Xiong,
- Abstract summary: OpenEval is an evaluation testbed that benchmarks Chinese LLMs across capability, alignment and safety.
For capability assessment, we include 12 benchmark datasets to evaluate Chinese LLMs from 4 sub-dimensions: NLP tasks, disciplinary knowledge, commonsense reasoning and mathematical reasoning.
For alignment assessment, OpenEval contains 7 datasets that examines the bias, offensiveness and illegalness in the outputs yielded by Chinese LLMs.
- Score: 37.07970624135514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Chinese large language models (LLMs) poses big challenges for efficient LLM evaluation. While current initiatives have introduced new benchmarks or evaluation platforms for assessing Chinese LLMs, many of these focus primarily on capabilities, usually overlooking potential alignment and safety issues. To address this gap, we introduce OpenEval, an evaluation testbed that benchmarks Chinese LLMs across capability, alignment and safety. For capability assessment, we include 12 benchmark datasets to evaluate Chinese LLMs from 4 sub-dimensions: NLP tasks, disciplinary knowledge, commonsense reasoning and mathematical reasoning. For alignment assessment, OpenEval contains 7 datasets that examines the bias, offensiveness and illegalness in the outputs yielded by Chinese LLMs. To evaluate safety, especially anticipated risks (e.g., power-seeking, self-awareness) of advanced LLMs, we include 6 datasets. In addition to these benchmarks, we have implemented a phased public evaluation and benchmark update strategy to ensure that OpenEval is in line with the development of Chinese LLMs or even able to provide cutting-edge benchmark datasets to guide the development of Chinese LLMs. In our first public evaluation, we have tested a range of Chinese LLMs, spanning from 7B to 72B parameters, including both open-source and proprietary models. Evaluation results indicate that while Chinese LLMs have shown impressive performance in certain tasks, more attention should be directed towards broader aspects such as commonsense reasoning, alignment, and safety.
Related papers
- Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - Flames: Benchmarking Value Alignment of LLMs in Chinese [86.73527292670308]
This paper proposes a value alignment benchmark named Flames.
It encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values.
Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames.
arXiv Detail & Related papers (2023-11-12T17:18:21Z) - Evaluating Large Language Models: A Comprehensive Survey [41.64914110226901]
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks.
They could suffer from private data leaks or yield inappropriate, harmful, or misleading content.
To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation.
arXiv Detail & Related papers (2023-10-30T17:00:52Z) - ZhuJiu: A Multi-dimensional, Multi-faceted Chinese Benchmark for Large
Language Models [17.562961249150295]
We propose the ZhuJiu benchmark for large language models (LLMs) evaluation.
ZhuJiu is the pioneering benchmark that fully assesses LLMs in Chinese, while also providing equally robust evaluation abilities in English.
The ZhuJiu benchmark and open-participation leaderboard are publicly released at http://www.zhujiu-benchmark.com/.
arXiv Detail & Related papers (2023-08-28T06:56:44Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.