Practical ultra-low frequency noise laser system for quantum sensors
- URL: http://arxiv.org/abs/2403.12405v1
- Date: Tue, 19 Mar 2024 03:33:19 GMT
- Title: Practical ultra-low frequency noise laser system for quantum sensors
- Authors: Shiyu Xue, Mingyong Jing, Hao Zhang, Linjie Zhang, Liantuan Xiao, Suotang Jia,
- Abstract summary: Two commonly used methods to suppress the laser's frequency noise are locking the laser to an atomic transition by the lock-in technique or to an ultra-low thermal expansion (ULE) glass cavity by the PDH technique.
This work demonstrates that, in many quantum sensing applications such as the Rydberg atomic superheterodyne receiver, the same performance as locking to the ULE cavity can be achieved.
- Score: 4.481539741098346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The laser's frequency noise is crucial to the sensitivity of quantum sensors. Two commonly used methods to suppress the laser's frequency noise are locking the laser to an atomic transition by the lock-in technique or to an ultra-low thermal expansion (ULE) glass cavity by the PDH technique. The former cannot suppress rapidly changing frequency noise and hardly meets the needs; the latter has powerful performance but a heightened cost. The lack of high-performance and low-cost laser noise suppression methods dramatically limits the practical application of quantum sensors. This work demonstrates that, in many quantum sensing applications such as the Rydberg atomic superheterodyne receiver, by cascade locking the laser to both the atomic transition and a low-cost (LC) cavity, the same performance as locking to the ULE cavity can be achieved. This work is significant in promoting the practical application of quantum sensors.
Related papers
- Measurement and feed-forward correction of the fast phase noise of lasers [0.0]
We present a fully-fiberized instrument detecting and correcting the fast, sub-microsecond, phase fluctuations of lasers.
These measurement and correction techniques are important tools for high-fidelity manipulation of the excited electronic states of atoms and molecules.
arXiv Detail & Related papers (2024-11-15T07:57:13Z) - A low phase noise cavity transmission self-injection locked laser system
for atomic physics experiments [0.0]
diode lasers with high spectral purity are indispensable for optical clocks and coherent manipulation of atomic and molecular qubits for applications such as quantum computing and quantum computation.
Here we demonstrate a self-injection locked diode laser system utilizing a medium finesse cavity.
We show that the fast phase noise of the laser at relevant Fourier frequencies of 100 kHz to >2 MHz is suppressed to a noise floor of between -110 dBc/Hz and -120 dBc/Hz, an improvement of 20 to 30 dB over state-of-the-art Pound-Drever-Hall-stabilized extended-cavity diode lasers.
arXiv Detail & Related papers (2023-11-06T19:02:32Z) - Strong broadband intensity noise squeezing from near-infrared to terahertz frequencies in semiconductor lasers with nonlinear dissipation [1.8865372809555165]
We show how semiconductor lasers with sharp intensity-dependent dissipation can support highly broadband intensity noise squeezing from infrared to terahertz wavelengths.
Our protocol realizes strongly intensity noise-squeezed intracavity quantum states, which could create a new regime for cavity quantum electrodynamics experiments.
The existence of these multiple functionalities in both the classical and quantum mechanical domains in a single semiconductor laser platform, could enable advances in on-chip quantum optical communication, computing, and sensing across the electromagnetic spectrum.
arXiv Detail & Related papers (2022-12-14T16:03:52Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Combining quantum noise reduction resources: a practical approach [0.0]
We provide the theoretical limits to noise reduction while combining quantum enhanced readout techniques for optomechanical sensors.
We demonstrate that backaction evasion through QND techniques dramatically reduces the technical challenges presented when using squeezed light for broadband force detection.
arXiv Detail & Related papers (2022-11-26T02:39:20Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Dual-laser self-injection locking to an integrated microresonator [93.17495788476688]
We experimentally demonstrate the dual-laser SIL of two multifrequency laser diodes to different modes of an integrated Si$_3$N$_4$ microresonator.
Locking both lasers to the same mode results in a simultaneous frequency and phase stabilization and coherent addition of their outputs.
arXiv Detail & Related papers (2022-01-06T16:25:15Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Proposal for a continuous wave laser with linewidth well below the
standard quantum limit [0.0]
We show that it is possible to reduce the laser linewidth by a factor equal to the number of photons in the laser cavity below the standard quantum limit.
This is an example of how quantum engineering techniques can inspire us to re-imagine the limits of conventional quantum systems.
arXiv Detail & Related papers (2020-09-07T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.