TransformMix: Learning Transformation and Mixing Strategies from Data
- URL: http://arxiv.org/abs/2403.12429v1
- Date: Tue, 19 Mar 2024 04:36:41 GMT
- Title: TransformMix: Learning Transformation and Mixing Strategies from Data
- Authors: Tsz-Him Cheung, Dit-Yan Yeung,
- Abstract summary: We propose an automated approach, TransformMix, to learn better transformation and mixing augmentation strategies from data.
We demonstrate the effectiveness of TransformMix on multiple datasets in transfer learning, classification, object detection, and knowledge distillation settings.
- Score: 20.79680733590554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation improves the generalization power of deep learning models by synthesizing more training samples. Sample-mixing is a popular data augmentation approach that creates additional data by combining existing samples. Recent sample-mixing methods, like Mixup and Cutmix, adopt simple mixing operations to blend multiple inputs. Although such a heuristic approach shows certain performance gains in some computer vision tasks, it mixes the images blindly and does not adapt to different datasets automatically. A mixing strategy that is effective for a particular dataset does not often generalize well to other datasets. If not properly configured, the methods may create misleading mixed images, which jeopardize the effectiveness of sample-mixing augmentations. In this work, we propose an automated approach, TransformMix, to learn better transformation and mixing augmentation strategies from data. In particular, TransformMix applies learned transformations and mixing masks to create compelling mixed images that contain correct and important information for the target tasks. We demonstrate the effectiveness of TransformMix on multiple datasets in transfer learning, classification, object detection, and knowledge distillation settings. Experimental results show that our method achieves better performance as well as efficiency when compared with strong sample-mixing baselines.
Related papers
- Adversarial AutoMixup [50.1874436169571]
We propose AdAutomixup, an adversarial automatic mixup augmentation approach.
It generates challenging samples to train a robust classifier for image classification.
Our approach outperforms the state of the art in various classification scenarios.
arXiv Detail & Related papers (2023-12-19T08:55:00Z) - MiAMix: Enhancing Image Classification through a Multi-stage Augmented
Mixed Sample Data Augmentation Method [0.5919433278490629]
We introduce a novel mixup method called MiAMix, which stands for Multi-stage Augmented Mixup.
MiAMix integrates image augmentation into the mixup framework, utilizes multiple diversified mixing methods concurrently, and improves the mixing method by randomly selecting mixing mask augmentation methods.
Recent methods utilize saliency information and the MiAMix is designed for computational efficiency as well, reducing additional overhead and offering easy integration into existing training pipelines.
arXiv Detail & Related papers (2023-08-05T06:29:46Z) - MixupE: Understanding and Improving Mixup from Directional Derivative
Perspective [86.06981860668424]
We propose an improved version of Mixup, theoretically justified to deliver better generalization performance than the vanilla Mixup.
Our results show that the proposed method improves Mixup across multiple datasets using a variety of architectures.
arXiv Detail & Related papers (2022-12-27T07:03:52Z) - DoubleMix: Simple Interpolation-Based Data Augmentation for Text
Classification [56.817386699291305]
This paper proposes a simple yet effective data augmentation approach termed DoubleMix.
DoubleMix first generates several perturbed samples for each training data.
It then uses the perturbed data and original data to carry out a two-step in the hidden space of neural models.
arXiv Detail & Related papers (2022-09-12T15:01:04Z) - RandoMix: A mixed sample data augmentation method with multiple mixed
modes [12.466162659083697]
RandoMix is a mixed-sample data augmentation method designed to address robustness and diversity challenges.
We evaluate the effectiveness of RandoMix on diverse datasets, including CIFAR-10/100, Tiny-ImageNet, ImageNet, and Google Speech Commands.
arXiv Detail & Related papers (2022-05-18T05:31:36Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data.
In this paper, we propose an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM)
DM can adaptively utilize hard mixed samples to mine discriminative features without losing the original smoothness of mixup.
arXiv Detail & Related papers (2022-03-21T07:12:18Z) - ResizeMix: Mixing Data with Preserved Object Information and True Labels [57.00554495298033]
We study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance.
We propose a more effective but very easily implemented method, namely ResizeMix.
arXiv Detail & Related papers (2020-12-21T03:43:13Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixup is the latest data augmentation technique that linearly interpolates input examples and the corresponding labels.
In this paper, we explore how to apply mixup to natural language processing tasks.
We incorporate mixup to transformer-based pre-trained architecture, named "mixup-transformer", for a wide range of NLP tasks.
arXiv Detail & Related papers (2020-10-05T23:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.