Human Mesh Recovery from Arbitrary Multi-view Images
- URL: http://arxiv.org/abs/2403.12434v4
- Date: Mon, 17 Jun 2024 12:28:55 GMT
- Title: Human Mesh Recovery from Arbitrary Multi-view Images
- Authors: Xiaoben Li, Mancheng Meng, Ziyan Wu, Terrence Chen, Fan Yang, Dinggang Shen,
- Abstract summary: We propose a divide and conquer framework for Unified Human Mesh Recovery (U-HMR) from arbitrary multi-view images.
In particular, U-HMR consists of a decoupled structure and two main components: camera and body decoupling (CBD), camera pose estimation (CPE) and arbitrary view fusion (AVF)
We conduct extensive experiments on three public datasets: Human3.6M, MPI-INF-3DHP, and TotalCapture.
- Score: 57.969696744428475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human mesh recovery from arbitrary multi-view images involves two characteristics: the arbitrary camera poses and arbitrary number of camera views. Because of the variability, designing a unified framework to tackle this task is challenging. The challenges can be summarized as the dilemma of being able to simultaneously estimate arbitrary camera poses and recover human mesh from arbitrary multi-view images while maintaining flexibility. To solve this dilemma, we propose a divide and conquer framework for Unified Human Mesh Recovery (U-HMR) from arbitrary multi-view images. In particular, U-HMR consists of a decoupled structure and two main components: camera and body decoupling (CBD), camera pose estimation (CPE), and arbitrary view fusion (AVF). As camera poses and human body mesh are independent of each other, CBD splits the estimation of them into two sub-tasks for two individual sub-networks (ie, CPE and AVF) to handle respectively, thus the two sub-tasks are disentangled. In CPE, since each camera pose is unrelated to the others, we adopt a shared MLP to process all views in a parallel way. In AVF, in order to fuse multi-view information and make the fusion operation independent of the number of views, we introduce a transformer decoder with a SMPL parameters query token to extract cross-view features for mesh recovery. To demonstrate the efficacy and flexibility of the proposed framework and effect of each component, we conduct extensive experiments on three public datasets: Human3.6M, MPI-INF-3DHP, and TotalCapture.
Related papers
- One Diffusion to Generate Them All [54.82732533013014]
OneDiffusion is a versatile, large-scale diffusion model that supports bidirectional image synthesis and understanding.
It enables conditional generation from inputs such as text, depth, pose, layout, and semantic maps.
OneDiffusion allows for multi-view generation, camera pose estimation, and instant personalization using sequential image inputs.
arXiv Detail & Related papers (2024-11-25T12:11:05Z) - Self-learning Canonical Space for Multi-view 3D Human Pose Estimation [57.969696744428475]
Multi-view 3D human pose estimation is naturally superior to single view one.
The accurate annotation of these information is hard to obtain.
We propose a fully self-supervised framework, named cascaded multi-view aggregating network (CMANet)
CMANet is superior to state-of-the-art methods in extensive quantitative and qualitative analysis.
arXiv Detail & Related papers (2024-03-19T04:54:59Z) - MUC: Mixture of Uncalibrated Cameras for Robust 3D Human Body Reconstruction [12.942635715952525]
Multiple cameras can provide comprehensive multi-view video coverage of a person.
Previous studies have overlooked the challenges posed by self-occlusion under multiple views.
We introduce a method to reconstruct the 3D human body from multiple uncalibrated camera views.
arXiv Detail & Related papers (2024-03-08T05:03:25Z) - Multi-HMR: Multi-Person Whole-Body Human Mesh Recovery in a Single Shot [22.848563931757962]
We present Multi-HMR, a strong sigle-shot model for multi-person 3D human mesh recovery from a single RGB image.
Predictions encompass the whole body, including hands and facial expressions, using the SMPL-X parametric model.
We show that incorporating it into the training data further enhances predictions, particularly for hands.
arXiv Detail & Related papers (2024-02-22T16:05:13Z) - Direct Multi-view Multi-person 3D Pose Estimation [138.48139701871213]
We present Multi-view Pose transformer (MvP) for estimating multi-person 3D poses from multi-view images.
MvP directly regresses the multi-person 3D poses in a clean and efficient way, without relying on intermediate tasks.
We show experimentally that our MvP model outperforms the state-of-the-art methods on several benchmarks while being much more efficient.
arXiv Detail & Related papers (2021-11-07T13:09:20Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
Existing approaches for multi-view 3D pose estimation explicitly establish cross-view correspondences to group 2D pose detections from multiple camera views.
We present our multi-view 3D pose estimation approach based on plane sweep stereo to jointly address the cross-view fusion and 3D pose reconstruction in a single shot.
arXiv Detail & Related papers (2021-04-06T03:49:35Z) - AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
the Wild [77.43884383743872]
We present AdaFuse, an adaptive multiview fusion method to enhance the features in occluded views.
We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic.
We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints.
arXiv Detail & Related papers (2020-10-26T03:19:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.