Boosting Transferability in Vision-Language Attacks via Diversification along the Intersection Region of Adversarial Trajectory
- URL: http://arxiv.org/abs/2403.12445v3
- Date: Sun, 14 Jul 2024 15:58:57 GMT
- Title: Boosting Transferability in Vision-Language Attacks via Diversification along the Intersection Region of Adversarial Trajectory
- Authors: Sensen Gao, Xiaojun Jia, Xuhong Ren, Ivor Tsang, Qing Guo,
- Abstract summary: Vision-language pre-training models are susceptible to multimodal adversarial examples (AEs)
We propose using diversification along the intersection region of adversarial trajectory to expand the diversity of AEs.
To further mitigate the potential overfitting, we direct the adversarial text deviating from the last intersection region along the optimization path.
- Score: 8.591762884862504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language pre-training (VLP) models exhibit remarkable capabilities in comprehending both images and text, yet they remain susceptible to multimodal adversarial examples (AEs). Strengthening attacks and uncovering vulnerabilities, especially common issues in VLP models (e.g., high transferable AEs), can advance reliable and practical VLP models. A recent work (i.e., Set-level guidance attack) indicates that augmenting image-text pairs to increase AE diversity along the optimization path enhances the transferability of adversarial examples significantly. However, this approach predominantly emphasizes diversity around the online adversarial examples (i.e., AEs in the optimization period), leading to the risk of overfitting the victim model and affecting the transferability. In this study, we posit that the diversity of adversarial examples towards the clean input and online AEs are both pivotal for enhancing transferability across VLP models. Consequently, we propose using diversification along the intersection region of adversarial trajectory to expand the diversity of AEs. To fully leverage the interaction between modalities, we introduce text-guided adversarial example selection during optimization. Furthermore, to further mitigate the potential overfitting, we direct the adversarial text deviating from the last intersection region along the optimization path, rather than adversarial images as in existing methods. Extensive experiments affirm the effectiveness of our method in improving transferability across various VLP models and downstream vision-and-language tasks.
Related papers
- Semantic-Aligned Adversarial Evolution Triangle for High-Transferability Vision-Language Attack [51.16384207202798]
Vision-language pre-training models are vulnerable to multimodal adversarial examples (AEs)
Previous approaches augment image-text pairs to enhance diversity within the adversarial example generation process.
We propose sampling from adversarial evolution triangles composed of clean, historical, and current adversarial examples to enhance adversarial diversity.
arXiv Detail & Related papers (2024-11-04T23:07:51Z) - Probing the Robustness of Vision-Language Pretrained Models: A Multimodal Adversarial Attack Approach [30.9778838504609]
Vision-language pretraining with transformers has demonstrated exceptional performance across numerous multimodal tasks.
Existing multimodal attack methods have largely overlooked cross-modal interactions between visual and textual modalities.
We propose a novel Joint Multimodal Transformer Feature Attack (JMTFA) that concurrently introduces adversarial perturbations in both visual and textual modalities.
arXiv Detail & Related papers (2024-08-24T04:31:37Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - Set-level Guidance Attack: Boosting Adversarial Transferability of
Vision-Language Pre-training Models [52.530286579915284]
We present the first study to investigate the adversarial transferability of vision-language pre-training models.
The transferability degradation is partly caused by the under-utilization of cross-modal interactions.
We propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance.
arXiv Detail & Related papers (2023-07-26T09:19:21Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Exploring Transferable and Robust Adversarial Perturbation Generation
from the Perspective of Network Hierarchy [52.153866313879924]
The transferability and robustness of adversarial examples are two practical yet important properties for black-box adversarial attacks.
We propose a transferable and robust adversarial generation (TRAP) method.
Our TRAP achieves impressive transferability and high robustness against certain interferences.
arXiv Detail & Related papers (2021-08-16T11:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.