Reinforcement learning based local path planning for mobile robot
- URL: http://arxiv.org/abs/2403.12463v1
- Date: Tue, 24 Oct 2023 18:26:25 GMT
- Title: Reinforcement learning based local path planning for mobile robot
- Authors: Mehmet Gok, Mehmet Tekerek, Hamza Aydemir,
- Abstract summary: In the offline scenario, an environment map is created once, and fixed path planning is made on this map to reach the target.
In the online scenario, the robot moves dynamically to a given target without using a map by using the perceived data coming from the sensors.
Deep neural network powered Q-Learning methods are used as an emerging solution to the aforementioned problems in mobile robot navigation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Different methods are used for a mobile robot to go to a specific target location. These methods work in different ways for online and offline scenarios. In the offline scenario, an environment map is created once, and fixed path planning is made on this map to reach the target. Path planning algorithms such as A* and RRT (Rapidly-Exploring Random Tree) are the examples of offline methods. The most obvious situation here is the need to re-plan the path for changing conditions of the loaded map. On the other hand, in the online scenario, the robot moves dynamically to a given target without using a map by using the perceived data coming from the sensors. Approaches such as SFM (Social Force Model) are used in online systems. However, these methods suffer from the requirement of a lot of dynamic sensing data. Thus, it can be said that the need for re-planning and mapping in offline systems and various system design requirements in online systems are the subjects that focus on autonomous mobile robot research. Recently, deep neural network powered Q-Learning methods are used as an emerging solution to the aforementioned problems in mobile robot navigation. In this study, machine learning algorithms with deep Q-Learning (DQN) and Deep DQN architectures, are evaluated for the solution of the problems presented above to realize path planning of an autonomous mobile robot to avoid obstacles.
Related papers
- Multi-Robot Informative Path Planning for Efficient Target Mapping using Deep Reinforcement Learning [11.134855513221359]
We propose a novel deep reinforcement learning approach for multi-robot informative path planning.
We train our reinforcement learning policy via the centralized training and decentralized execution paradigm.
Our approach outperforms other state-of-the-art multi-robot target mapping approaches by 33.75% in terms of the number of discovered targets-of-interest.
arXiv Detail & Related papers (2024-09-25T14:27:37Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
We propose a neural network model that returns a differentiable collision cost based on robot pose, obstacle map, and robot footprint.
Our architecture includes neural image encoders, which transform obstacle maps and robot footprints into embeddings.
Experiment on Husky UGV mobile robot showed that our approach allows real-time and safe local planning.
arXiv Detail & Related papers (2023-10-25T05:00:21Z) - Robot path planning using deep reinforcement learning [0.0]
Reinforcement learning methods offer an alternative to map-free navigation tasks.
Deep reinforcement learning agents are implemented for both the obstacle avoidance and the goal-oriented navigation task.
An analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.
arXiv Detail & Related papers (2023-02-17T20:08:59Z) - Systematic Comparison of Path Planning Algorithms using PathBench [55.335463666037086]
Path planning is an essential component of mobile robotics.
Development of learning-based path planning algorithms has been experiencing rapid growth.
This paper presents PathBench, a platform for developing, visualizing, training, testing, and benchmarking of existing and future path planning algorithms.
arXiv Detail & Related papers (2022-03-07T01:52:57Z) - Pragmatic Implementation of Reinforcement Algorithms For Path Finding On
Raspberry Pi [0.0]
The proposed system is a cost-efficient approach that is implemented to facilitate a Raspberry Pi controlled four-wheel-drive non-holonomic robot map a grid.
Q learning and Deep-Q learning are used to find the optimal path while avoiding collision with static obstacles.
A novel algorithm to decode an array of directions into accurate movements is also proposed.
arXiv Detail & Related papers (2021-12-07T09:00:14Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Autonomous Navigation in Dynamic Environments: Deep Learning-Based
Approach [0.0]
This thesis studies different deep learning-based approaches, highlighting the advantages and disadvantages of each scheme.
One of the deep learning methods based on convolutional neural network (CNN) is realized by software implementations.
We propose a low-cost approach, for indoor applications such as restaurants, museums, etc, on the base of using a monocular camera instead of a laser scanner.
arXiv Detail & Related papers (2021-02-03T23:20:20Z) - Deep Reinforcement Learning Based Dynamic Route Planning for Minimizing
Travel Time [8.234463661266169]
We design a route planning algorithm based on deep reinforcement learning for pedestrians.
We propose a dynamically adjustable route planning (DARP) algorithm, where the agent learns strategies through a dueling deep Q network to avoid congested roads.
Simulation results show that the DARP algorithm saves 52% of the time under congestion condition when compared with traditional shortest path planning algorithms.
arXiv Detail & Related papers (2020-11-03T15:10:09Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.