Lifting Multi-View Detection and Tracking to the Bird's Eye View
- URL: http://arxiv.org/abs/2403.12573v1
- Date: Tue, 19 Mar 2024 09:33:07 GMT
- Title: Lifting Multi-View Detection and Tracking to the Bird's Eye View
- Authors: Torben Teepe, Philipp Wolters, Johannes Gilg, Fabian Herzog, Gerhard Rigoll,
- Abstract summary: Recent advancements in multi-view detection and 3D object recognition have significantly improved performance.
We compare modern lifting methods, both parameter-free and parameterized, to multi-view aggregation.
We present an architecture that aggregates the features of multiple times steps to learn robust detection.
- Score: 5.679775668038154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Taking advantage of multi-view aggregation presents a promising solution to tackle challenges such as occlusion and missed detection in multi-object tracking and detection. Recent advancements in multi-view detection and 3D object recognition have significantly improved performance by strategically projecting all views onto the ground plane and conducting detection analysis from a Bird's Eye View. In this paper, we compare modern lifting methods, both parameter-free and parameterized, to multi-view aggregation. Additionally, we present an architecture that aggregates the features of multiple times steps to learn robust detection and combines appearance- and motion-based cues for tracking. Most current tracking approaches either focus on pedestrians or vehicles. In our work, we combine both branches and add new challenges to multi-view detection with cross-scene setups. Our method generalizes to three public datasets across two domains: (1) pedestrian: Wildtrack and MultiviewX, and (2) roadside perception: Synthehicle, achieving state-of-the-art performance in detection and tracking. https://github.com/tteepe/TrackTacular
Related papers
- RockTrack: A 3D Robust Multi-Camera-Ken Multi-Object Tracking Framework [28.359633046753228]
We propose RockTrack, a 3D MOT method for multi-camera detectors.
RockTrack incorporates a confidence-guided preprocessing module to extract reliable motion and image observations.
RockTrack achieves state-of-the-art performance on the nuScenes vision-only tracking leaderboard with 59.1% AMOTA.
arXiv Detail & Related papers (2024-09-18T07:08:08Z) - ADA-Track: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
We introduce ADA-Track, a novel end-to-end framework for 3D MOT from multi-view cameras.
We introduce a learnable data association module based on edge-augmented cross-attention.
We integrate this association module into the decoder layer of a DETR-based 3D detector.
arXiv Detail & Related papers (2024-05-14T19:02:33Z) - EarlyBird: Early-Fusion for Multi-View Tracking in the Bird's Eye View [6.093524345727119]
We show that early-fusion in the Bird's Eye View achieves high accuracy for both detection and tracking.
EarlyBird outperforms the state-of-the-art methods and improves the current state-of-the-art on Wildtrack by +4.6 MOTA and +5.6 IDF1.
arXiv Detail & Related papers (2023-10-20T08:27:21Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
Multiple Object Tracking (MOT) is an important task in computer vision.
We propose the Box-Plane Matching (BPM) method to improve the MOT performacne in dense scenes.
With the effectiveness of the three modules, our team achieves the 1st place on the Track-1 leaderboard in the ACM MM Grand Challenge HiEve 2020.
arXiv Detail & Related papers (2020-07-30T16:39:22Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - Multiview Detection with Feature Perspective Transformation [59.34619548026885]
We propose a novel multiview detection system, MVDet.
We take an anchor-free approach to aggregate multiview information by projecting feature maps onto the ground plane.
Our entire model is end-to-end learnable and achieves 88.2% MODA on the standard Wildtrack dataset.
arXiv Detail & Related papers (2020-07-14T17:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.