Deciphering AutoML Ensembles: cattleia's Assistance in Decision-Making
- URL: http://arxiv.org/abs/2403.12664v1
- Date: Tue, 19 Mar 2024 11:56:21 GMT
- Title: Deciphering AutoML Ensembles: cattleia's Assistance in Decision-Making
- Authors: Anna Kozak, Dominik Kędzierski, Jakub Piwko, Malwina Wojewoda, Katarzyna Woźnica,
- Abstract summary: Cattleia is an application that deciphers the ensembles for regression, multiclass, and binary classification tasks.
It works with models built by three AutoML packages: auto-sklearn, AutoGluon, and FLAML.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many applications, model ensembling proves to be better than a single predictive model. Hence, it is the most common post-processing technique in Automated Machine Learning (AutoML). The most popular frameworks use ensembles at the expense of reducing the interpretability of the final models. In our work, we propose cattleia - an application that deciphers the ensembles for regression, multiclass, and binary classification tasks. This tool works with models built by three AutoML packages: auto-sklearn, AutoGluon, and FLAML. The given ensemble is analyzed from different perspectives. We conduct a predictive performance investigation through evaluation metrics of the ensemble and its component models. We extend the validation perspective by introducing new measures to assess the diversity and complementarity of the model predictions. Moreover, we apply explainable artificial intelligence (XAI) techniques to examine the importance of variables. Summarizing obtained insights, we can investigate and adjust the weights with a modification tool to tune the ensemble in the desired way. The application provides the aforementioned aspects through dedicated interactive visualizations, making it accessible to a diverse audience. We believe the cattleia can support users in decision-making and deepen the comprehension of AutoML frameworks.
Related papers
- Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - VQA Training Sets are Self-play Environments for Generating Few-shot Pools [2.556825820539693]
We propose a technique in which existing training sets can be directly used for constructing computational environments with task metrics as rewards.
The proposed method starts with zero-shot prompts and iteratively refines them by selecting few-shot examples that maximize the task metric on the training set.
Our experiments showcase how Gemini learns how to use itself, or another smaller and specialized model such as ScreenAI, to iteratively improve performance on training sets.
arXiv Detail & Related papers (2024-05-30T07:38:58Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiViz is a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages.
We show that the complementary stages in MultiViz together enable users to simulate model predictions, assign interpretable concepts to features, perform error analysis on model misclassifications, and use insights from error analysis to debug models.
arXiv Detail & Related papers (2022-06-30T18:42:06Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions.
Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets.
arXiv Detail & Related papers (2021-09-12T18:34:33Z) - Model LineUpper: Supporting Interactive Model Comparison at Multiple
Levels for AutoML [29.04776652873194]
In current AutoML systems, selection is supported only by performance metrics.
We develop tool to support interactive model comparison for AutoML by integrating multiple Explainable AI (XAI) and visualization techniques.
arXiv Detail & Related papers (2021-04-09T14:06:13Z) - StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics [4.237343083490243]
In machine learning (ML), ensemble methods such as bagging, boosting, and stacking are widely-established approaches.
StackGenVis is a visual analytics system for stacked generalization.
arXiv Detail & Related papers (2020-05-04T15:43:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.